Yao Du, Cyril Leung, Zehua Wang, Victor C. M. Leung
{"title":"通过证明有用的工作加速区块链支持的分布式机器学习","authors":"Yao Du, Cyril Leung, Zehua Wang, Victor C. M. Leung","doi":"10.1109/IWQoS54832.2022.9812927","DOIUrl":null,"url":null,"abstract":"In Internet of Things (IoT) employing centralized machine learning, security is a major concern due to the heterogeneity of end devices. Decentralized machine learning (DML) with blockchain is a potential solution. However, blockchain with proof-of-work (PoW) consensus mechanism wastes computing resources and adds latency to DML. Computing resources can be utilized more efficiently with proof-of-useful-work (uPoW), which secures transactions by solving real-world problems. We propose a novel uPoW method that exploits PoW mining to accelerate DML through a task scheduling framework for multi-access edge computing (MEC) systems. To provide a good quality-of-service for the system, we minimize the latency by solving a multi-way number partitioning problem in the extended form. A novel uPoW-based mechanism is proposed to schedule DML tasks among MEC servers effectively. Simulation results show that our proposed blockchain strategies accelerate DML significantly compared with benchmarks.","PeriodicalId":353365,"journal":{"name":"2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Accelerating Blockchain-enabled Distributed Machine Learning by Proof of Useful Work\",\"authors\":\"Yao Du, Cyril Leung, Zehua Wang, Victor C. M. Leung\",\"doi\":\"10.1109/IWQoS54832.2022.9812927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Internet of Things (IoT) employing centralized machine learning, security is a major concern due to the heterogeneity of end devices. Decentralized machine learning (DML) with blockchain is a potential solution. However, blockchain with proof-of-work (PoW) consensus mechanism wastes computing resources and adds latency to DML. Computing resources can be utilized more efficiently with proof-of-useful-work (uPoW), which secures transactions by solving real-world problems. We propose a novel uPoW method that exploits PoW mining to accelerate DML through a task scheduling framework for multi-access edge computing (MEC) systems. To provide a good quality-of-service for the system, we minimize the latency by solving a multi-way number partitioning problem in the extended form. A novel uPoW-based mechanism is proposed to schedule DML tasks among MEC servers effectively. Simulation results show that our proposed blockchain strategies accelerate DML significantly compared with benchmarks.\",\"PeriodicalId\":353365,\"journal\":{\"name\":\"2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWQoS54832.2022.9812927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWQoS54832.2022.9812927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accelerating Blockchain-enabled Distributed Machine Learning by Proof of Useful Work
In Internet of Things (IoT) employing centralized machine learning, security is a major concern due to the heterogeneity of end devices. Decentralized machine learning (DML) with blockchain is a potential solution. However, blockchain with proof-of-work (PoW) consensus mechanism wastes computing resources and adds latency to DML. Computing resources can be utilized more efficiently with proof-of-useful-work (uPoW), which secures transactions by solving real-world problems. We propose a novel uPoW method that exploits PoW mining to accelerate DML through a task scheduling framework for multi-access edge computing (MEC) systems. To provide a good quality-of-service for the system, we minimize the latency by solving a multi-way number partitioning problem in the extended form. A novel uPoW-based mechanism is proposed to schedule DML tasks among MEC servers effectively. Simulation results show that our proposed blockchain strategies accelerate DML significantly compared with benchmarks.