时间分数阶非线性微分差分方程的可靠分析

M. Singh, R. N. Prajapati
{"title":"时间分数阶非线性微分差分方程的可靠分析","authors":"M. Singh, R. N. Prajapati","doi":"10.2478/s13531-013-0129-2","DOIUrl":null,"url":null,"abstract":"In this study, we used HPM to determine the approximate analytical solution of nonlinear differential difference equations of fractional time derivative. By using initial conditions, the explicit solutions of the coupled nonlinear differential difference equations have been derived which demonstrate the effectiveness, potentiality and validity of the method in reality. The present method is very effective and powerful to determine the solution of system of non-linear DDE. The numerical calculations are carried out when the initial condition in the form of hyperbolic functions and the results are shown through the graphs.","PeriodicalId":407983,"journal":{"name":"Central European Journal of Engineering","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reliable analysis for time-fractional nonlinear differential difference equations\",\"authors\":\"M. Singh, R. N. Prajapati\",\"doi\":\"10.2478/s13531-013-0129-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we used HPM to determine the approximate analytical solution of nonlinear differential difference equations of fractional time derivative. By using initial conditions, the explicit solutions of the coupled nonlinear differential difference equations have been derived which demonstrate the effectiveness, potentiality and validity of the method in reality. The present method is very effective and powerful to determine the solution of system of non-linear DDE. The numerical calculations are carried out when the initial condition in the form of hyperbolic functions and the results are shown through the graphs.\",\"PeriodicalId\":407983,\"journal\":{\"name\":\"Central European Journal of Engineering\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s13531-013-0129-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s13531-013-0129-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本研究中,我们使用HPM来确定分数阶时间导数非线性微分差分方程的近似解析解。利用初始条件,导出了耦合非线性微分差分方程的显式解,证明了该方法在现实中的有效性、潜力和有效性。该方法对于非线性DDE系统解的确定是非常有效和有力的。将初始条件以双曲函数的形式进行数值计算,并以图形的形式给出计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliable analysis for time-fractional nonlinear differential difference equations
In this study, we used HPM to determine the approximate analytical solution of nonlinear differential difference equations of fractional time derivative. By using initial conditions, the explicit solutions of the coupled nonlinear differential difference equations have been derived which demonstrate the effectiveness, potentiality and validity of the method in reality. The present method is very effective and powerful to determine the solution of system of non-linear DDE. The numerical calculations are carried out when the initial condition in the form of hyperbolic functions and the results are shown through the graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信