{"title":"拟可微向量优化问题的极小变分原理","authors":"H. Singh, Vivek Laha","doi":"10.1080/10556788.2022.2119235","DOIUrl":null,"url":null,"abstract":"This paper deals with quasidifferentiable vector optimization problems involving invex functions wrt convex compact sets. We present vector variational-like inequalities of Minty type and of Stampacchia type in terms of quasidifferentials denoted by (QMVVLI) and (QSVVLI), respectively. By utilizing these variational inequalities, we infer vital and adequate optimality conditions for an efficient solution of the quasidifferentiable vector optimization problem involving invex functions wrt convex compact sets. We also establish various results for the solutions of the corresponding weak versions of the vector variational-like inequalities in terms of quasidifferentials.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On minty variational principle for quasidifferentiable vector optimization problems\",\"authors\":\"H. Singh, Vivek Laha\",\"doi\":\"10.1080/10556788.2022.2119235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with quasidifferentiable vector optimization problems involving invex functions wrt convex compact sets. We present vector variational-like inequalities of Minty type and of Stampacchia type in terms of quasidifferentials denoted by (QMVVLI) and (QSVVLI), respectively. By utilizing these variational inequalities, we infer vital and adequate optimality conditions for an efficient solution of the quasidifferentiable vector optimization problem involving invex functions wrt convex compact sets. We also establish various results for the solutions of the corresponding weak versions of the vector variational-like inequalities in terms of quasidifferentials.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2022.2119235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2022.2119235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On minty variational principle for quasidifferentiable vector optimization problems
This paper deals with quasidifferentiable vector optimization problems involving invex functions wrt convex compact sets. We present vector variational-like inequalities of Minty type and of Stampacchia type in terms of quasidifferentials denoted by (QMVVLI) and (QSVVLI), respectively. By utilizing these variational inequalities, we infer vital and adequate optimality conditions for an efficient solution of the quasidifferentiable vector optimization problem involving invex functions wrt convex compact sets. We also establish various results for the solutions of the corresponding weak versions of the vector variational-like inequalities in terms of quasidifferentials.