拟可微向量优化问题的极小变分原理

H. Singh, Vivek Laha
{"title":"拟可微向量优化问题的极小变分原理","authors":"H. Singh, Vivek Laha","doi":"10.1080/10556788.2022.2119235","DOIUrl":null,"url":null,"abstract":"This paper deals with quasidifferentiable vector optimization problems involving invex functions wrt convex compact sets. We present vector variational-like inequalities of Minty type and of Stampacchia type in terms of quasidifferentials denoted by (QMVVLI) and (QSVVLI), respectively. By utilizing these variational inequalities, we infer vital and adequate optimality conditions for an efficient solution of the quasidifferentiable vector optimization problem involving invex functions wrt convex compact sets. We also establish various results for the solutions of the corresponding weak versions of the vector variational-like inequalities in terms of quasidifferentials.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On minty variational principle for quasidifferentiable vector optimization problems\",\"authors\":\"H. Singh, Vivek Laha\",\"doi\":\"10.1080/10556788.2022.2119235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with quasidifferentiable vector optimization problems involving invex functions wrt convex compact sets. We present vector variational-like inequalities of Minty type and of Stampacchia type in terms of quasidifferentials denoted by (QMVVLI) and (QSVVLI), respectively. By utilizing these variational inequalities, we infer vital and adequate optimality conditions for an efficient solution of the quasidifferentiable vector optimization problem involving invex functions wrt convex compact sets. We also establish various results for the solutions of the corresponding weak versions of the vector variational-like inequalities in terms of quasidifferentials.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2022.2119235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2022.2119235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究凸紧集上含凸函数的拟可微向量优化问题。我们分别用(QMVVLI)和(QSVVLI)表示了Minty型和Stampacchia型的类向量变分不等式。利用这些变分不等式,我们推导出凸紧集上含凸函数的拟可微向量优化问题有效解的重要且充分的最优性条件。我们还建立了拟微分形式的向量类变分不等式的相应弱版本的解的各种结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On minty variational principle for quasidifferentiable vector optimization problems
This paper deals with quasidifferentiable vector optimization problems involving invex functions wrt convex compact sets. We present vector variational-like inequalities of Minty type and of Stampacchia type in terms of quasidifferentials denoted by (QMVVLI) and (QSVVLI), respectively. By utilizing these variational inequalities, we infer vital and adequate optimality conditions for an efficient solution of the quasidifferentiable vector optimization problem involving invex functions wrt convex compact sets. We also establish various results for the solutions of the corresponding weak versions of the vector variational-like inequalities in terms of quasidifferentials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信