一个符号计算方法的证据代码映射的生物数据集成和主观分析的参考关联代谢途径

S. Kher, Jianling Peng, E. SyrkinWurtele, J. Dickerson
{"title":"一个符号计算方法的证据代码映射的生物数据集成和主观分析的参考关联代谢途径","authors":"S. Kher, Jianling Peng, E. SyrkinWurtele, J. Dickerson","doi":"10.1109/NAFIPS.2008.4531321","DOIUrl":null,"url":null,"abstract":"Biological data are scattered across thousands of biological databases and hundreds of scientific journals. Integration among these databases faces numerous challenges including various levels of heterogeneity, limited accessibility, redundancy, and conflicts in the data. The integration process needs both quantitative and qualitative mechanisms to accommodate input metrics such as evidence, context, references, and experimental conditions, which are not uniform across the databases. Evidence codes reflect source reliability and data quality. However, different databases define their own evidence codes. This paper presents a mechanism to qualitatively integrate the evidence codes and the references specified by each database. The methodology is tested using a sample pathway from the BioCyc Tierl, KEGG, and MetNetDB pathway databases. The results are promising and form a concrete basis for data integration.","PeriodicalId":430770,"journal":{"name":"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A symbolic computing approach to evidence code mapping for biological data integration and subjective analysis for reference associations for metabolic pathways\",\"authors\":\"S. Kher, Jianling Peng, E. SyrkinWurtele, J. Dickerson\",\"doi\":\"10.1109/NAFIPS.2008.4531321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biological data are scattered across thousands of biological databases and hundreds of scientific journals. Integration among these databases faces numerous challenges including various levels of heterogeneity, limited accessibility, redundancy, and conflicts in the data. The integration process needs both quantitative and qualitative mechanisms to accommodate input metrics such as evidence, context, references, and experimental conditions, which are not uniform across the databases. Evidence codes reflect source reliability and data quality. However, different databases define their own evidence codes. This paper presents a mechanism to qualitatively integrate the evidence codes and the references specified by each database. The methodology is tested using a sample pathway from the BioCyc Tierl, KEGG, and MetNetDB pathway databases. The results are promising and form a concrete basis for data integration.\",\"PeriodicalId\":430770,\"journal\":{\"name\":\"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.2008.4531321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2008.4531321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

生物数据分散在数千个生物数据库和数百种科学期刊中。这些数据库之间的集成面临许多挑战,包括不同级别的异构性、有限的可访问性、冗余和数据中的冲突。整合过程需要定量和定性机制来适应输入指标,如证据、背景、参考和实验条件,这些指标在数据库中是不统一的。证据代码反映了来源的可靠性和数据的质量。然而,不同的数据库定义了自己的证据代码。本文提出了一种将证据代码和各数据库指定的参考文献进行定性整合的机制。使用来自BioCyc Tierl、KEGG和MetNetDB通路数据库的样本通路对该方法进行了测试。结果是有希望的,并形成了数据集成的具体基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A symbolic computing approach to evidence code mapping for biological data integration and subjective analysis for reference associations for metabolic pathways
Biological data are scattered across thousands of biological databases and hundreds of scientific journals. Integration among these databases faces numerous challenges including various levels of heterogeneity, limited accessibility, redundancy, and conflicts in the data. The integration process needs both quantitative and qualitative mechanisms to accommodate input metrics such as evidence, context, references, and experimental conditions, which are not uniform across the databases. Evidence codes reflect source reliability and data quality. However, different databases define their own evidence codes. This paper presents a mechanism to qualitatively integrate the evidence codes and the references specified by each database. The methodology is tested using a sample pathway from the BioCyc Tierl, KEGG, and MetNetDB pathway databases. The results are promising and form a concrete basis for data integration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信