{"title":"基于β-散度的非负块项分解:联合数据融合与盲光谱解混","authors":"Clémence Prévost, Valentin Leplat","doi":"10.1109/ICASSP49357.2023.10096100","DOIUrl":null,"url":null,"abstract":"We present a new method for solving simultaneously hyperspectral super-resolution and spectral unmixing of the unknown super-resolution image. Our method relies on three key elements: (1) the nonnegative decomposition in rank-(Lr, Lr, 1) block-terms, (2) joint tensor factorization with multiplicative updates, and (3) the formulation of a family of optimization problems with β-divergences objective functions. We come up with a family of simple, robust and efficient algorithms, adaptable to various noise statistics. Experiments show that our approach competes favorably with state-of-the-art methods for solving both problems at hand for various noise statistics.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonnegative Block-Term Decomposition with the β-Divergence: Joint Data Fusion and Blind Spectral Unmixing\",\"authors\":\"Clémence Prévost, Valentin Leplat\",\"doi\":\"10.1109/ICASSP49357.2023.10096100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new method for solving simultaneously hyperspectral super-resolution and spectral unmixing of the unknown super-resolution image. Our method relies on three key elements: (1) the nonnegative decomposition in rank-(Lr, Lr, 1) block-terms, (2) joint tensor factorization with multiplicative updates, and (3) the formulation of a family of optimization problems with β-divergences objective functions. We come up with a family of simple, robust and efficient algorithms, adaptable to various noise statistics. Experiments show that our approach competes favorably with state-of-the-art methods for solving both problems at hand for various noise statistics.\",\"PeriodicalId\":113072,\"journal\":{\"name\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP49357.2023.10096100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10096100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonnegative Block-Term Decomposition with the β-Divergence: Joint Data Fusion and Blind Spectral Unmixing
We present a new method for solving simultaneously hyperspectral super-resolution and spectral unmixing of the unknown super-resolution image. Our method relies on three key elements: (1) the nonnegative decomposition in rank-(Lr, Lr, 1) block-terms, (2) joint tensor factorization with multiplicative updates, and (3) the formulation of a family of optimization problems with β-divergences objective functions. We come up with a family of simple, robust and efficient algorithms, adaptable to various noise statistics. Experiments show that our approach competes favorably with state-of-the-art methods for solving both problems at hand for various noise statistics.