基于神经网络的气缸自适应I-PD控制器

A. Fujiwara, K. Katsumata, Y. Ishida
{"title":"基于神经网络的气缸自适应I-PD控制器","authors":"A. Fujiwara, K. Katsumata, Y. Ishida","doi":"10.1109/SICE.1995.526695","DOIUrl":null,"url":null,"abstract":"This paper describes a method of self-tuning the I-PD controller for pneumatic cylinder using neural networks. As it is well known I-PD controllers are widely used for process control, because they have good performance. However, it is very difficult to determine I-PD gains in case of controlled object with deadtime. Here, we propose a self-tuning I-PD controller and show the simulation and experimental results to demonstrate the effectiveness of our method.","PeriodicalId":344374,"journal":{"name":"SICE '95. Proceedings of the 34th SICE Annual Conference. International Session Papers","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Neural network based adaptive I-PD controller for pneumatic cylinder\",\"authors\":\"A. Fujiwara, K. Katsumata, Y. Ishida\",\"doi\":\"10.1109/SICE.1995.526695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a method of self-tuning the I-PD controller for pneumatic cylinder using neural networks. As it is well known I-PD controllers are widely used for process control, because they have good performance. However, it is very difficult to determine I-PD gains in case of controlled object with deadtime. Here, we propose a self-tuning I-PD controller and show the simulation and experimental results to demonstrate the effectiveness of our method.\",\"PeriodicalId\":344374,\"journal\":{\"name\":\"SICE '95. Proceedings of the 34th SICE Annual Conference. International Session Papers\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SICE '95. Proceedings of the 34th SICE Annual Conference. International Session Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SICE.1995.526695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE '95. Proceedings of the 34th SICE Annual Conference. International Session Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.1995.526695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文介绍了一种利用神经网络对气缸I-PD控制器进行自整定的方法。众所周知,I-PD控制器因其良好的性能被广泛应用于过程控制中。然而,当被控对象存在死区时,I-PD增益很难确定。在此,我们提出了一种自整定的I-PD控制器,并给出了仿真和实验结果来证明我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network based adaptive I-PD controller for pneumatic cylinder
This paper describes a method of self-tuning the I-PD controller for pneumatic cylinder using neural networks. As it is well known I-PD controllers are widely used for process control, because they have good performance. However, it is very difficult to determine I-PD gains in case of controlled object with deadtime. Here, we propose a self-tuning I-PD controller and show the simulation and experimental results to demonstrate the effectiveness of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信