AAM衍生的人脸表示鲁棒面部动作识别

S. Lucey, I. Matthews, Changbo Hu, Z. Ambadar, F. D. L. Torre, J. Cohn
{"title":"AAM衍生的人脸表示鲁棒面部动作识别","authors":"S. Lucey, I. Matthews, Changbo Hu, Z. Ambadar, F. D. L. Torre, J. Cohn","doi":"10.1109/FGR.2006.17","DOIUrl":null,"url":null,"abstract":"In this paper, we present results on experiments employing active appearance model (AAM) derived facial representations, for the task of facial action recognition. Experimental results demonstrate the benefit of AAM-derived representations on a spontaneous AU database containing \"real-world\" variation. Additionally, we explore a number of normalization methods for these representations which increase facial action recognition performance","PeriodicalId":109260,"journal":{"name":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"123","resultStr":"{\"title\":\"AAM derived face representations for robust facial action recognition\",\"authors\":\"S. Lucey, I. Matthews, Changbo Hu, Z. Ambadar, F. D. L. Torre, J. Cohn\",\"doi\":\"10.1109/FGR.2006.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present results on experiments employing active appearance model (AAM) derived facial representations, for the task of facial action recognition. Experimental results demonstrate the benefit of AAM-derived representations on a spontaneous AU database containing \\\"real-world\\\" variation. Additionally, we explore a number of normalization methods for these representations which increase facial action recognition performance\",\"PeriodicalId\":109260,\"journal\":{\"name\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"123\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FGR.2006.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGR.2006.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 123

摘要

在本文中,我们介绍了使用主动外观模型(AAM)衍生的面部表征来完成面部动作识别任务的实验结果。实验结果表明,在包含“真实世界”变化的自发AU数据库上,aam衍生的表示是有益的。此外,我们还探索了一些用于这些表示的归一化方法,以提高面部动作识别性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AAM derived face representations for robust facial action recognition
In this paper, we present results on experiments employing active appearance model (AAM) derived facial representations, for the task of facial action recognition. Experimental results demonstrate the benefit of AAM-derived representations on a spontaneous AU database containing "real-world" variation. Additionally, we explore a number of normalization methods for these representations which increase facial action recognition performance
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信