{"title":"基于N-BEATS的交通事故持续时间预测","authors":"Y. He, Senchang Zhang, Peiyao Zhong, Zhenliang Li","doi":"10.1117/12.2679093","DOIUrl":null,"url":null,"abstract":"The prediction of traffic accident duration is the basis of highway emergency management. Timely and accurate prediction of traffic accident duration can provide a reliable basis for road guidance and rescue organization. This paper discusses the traffic accident duration prediction method of N-BEATS model in detail. Through the change of sliding window size and the continuous adjustment of the number of iterations, the appropriate parameters are found to produce a good prediction effect. The dataset used in this paper is US Accidents, a nation-wide dataset of traffic accidents covering 49 states in the US. The experimental results show that compared with the classical time series prediction models such as Bi-LSTM, SVM, RNN-GRU and AttnAR, prediction of traffic accident duration model based on N-BEATS proposed in this paper is optimal in the three evaluation indicators of RMSE, MAE and SD, which shows that the model has the highest prediction accuracy and good performance.","PeriodicalId":342847,"journal":{"name":"International Conference on Algorithms, Microchips and Network Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of traffic accident duration based on N-BEATS\",\"authors\":\"Y. He, Senchang Zhang, Peiyao Zhong, Zhenliang Li\",\"doi\":\"10.1117/12.2679093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prediction of traffic accident duration is the basis of highway emergency management. Timely and accurate prediction of traffic accident duration can provide a reliable basis for road guidance and rescue organization. This paper discusses the traffic accident duration prediction method of N-BEATS model in detail. Through the change of sliding window size and the continuous adjustment of the number of iterations, the appropriate parameters are found to produce a good prediction effect. The dataset used in this paper is US Accidents, a nation-wide dataset of traffic accidents covering 49 states in the US. The experimental results show that compared with the classical time series prediction models such as Bi-LSTM, SVM, RNN-GRU and AttnAR, prediction of traffic accident duration model based on N-BEATS proposed in this paper is optimal in the three evaluation indicators of RMSE, MAE and SD, which shows that the model has the highest prediction accuracy and good performance.\",\"PeriodicalId\":342847,\"journal\":{\"name\":\"International Conference on Algorithms, Microchips and Network Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Algorithms, Microchips and Network Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2679093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Algorithms, Microchips and Network Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2679093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of traffic accident duration based on N-BEATS
The prediction of traffic accident duration is the basis of highway emergency management. Timely and accurate prediction of traffic accident duration can provide a reliable basis for road guidance and rescue organization. This paper discusses the traffic accident duration prediction method of N-BEATS model in detail. Through the change of sliding window size and the continuous adjustment of the number of iterations, the appropriate parameters are found to produce a good prediction effect. The dataset used in this paper is US Accidents, a nation-wide dataset of traffic accidents covering 49 states in the US. The experimental results show that compared with the classical time series prediction models such as Bi-LSTM, SVM, RNN-GRU and AttnAR, prediction of traffic accident duration model based on N-BEATS proposed in this paper is optimal in the three evaluation indicators of RMSE, MAE and SD, which shows that the model has the highest prediction accuracy and good performance.