A. G. Alkushi, Naser A. ElSawy, M. HijaziM, Eslam A. Header, Hataba Aa
{"title":"维生素E对肥胖致睾丸组织损伤的治疗作用","authors":"A. G. Alkushi, Naser A. ElSawy, M. HijaziM, Eslam A. Header, Hataba Aa","doi":"10.4172/2165-7904.1000320","DOIUrl":null,"url":null,"abstract":"Obesity can adversely affect overall health, leading to reduced life expectancy and/or an increase in the number of health problems. Meanwhile, alterations in testicular metabolism induced by high-energy diets (HED) may induce mitochondrial dysfunction, which is closely associated to reactive oxygen species (ROS) and oxidative stress. Reactive oxygen species (ROS)-mediated damage to sperm is a significant contributing pathology in 30–80% of infertility cases. Vitamin E is considered to be the most effective liposolouble antioxidant found in biological systems. Here we evaluated the protective role of vitamin E against obesity-induced morphological changes in testes from albino rats fed different diets. Animals were divided into four groups: Group 1: standard controlled diet (SCD); Group 2: positive control group fed a high-fat diet (HFD); Group 3: αTF+HFD fed HFD supplemented with 100 mg/kg vitamin E (αTF); Group 4: αTF+SCD, fed 100 mg/kg αTF and SCD. Rats were weighed before and after the 10 week feeding period to determine changes in body weight (BWG %). After collecting blood from an intracardiac puncture under deep anesthesia, all animals were sacrificed and samples were analyzed by light microscopy. A HFD appeared to cause spermatocyte and Leydig cell damage, as well as decreases in testicular weight and function and testosterone production. Vitamin E supplementation promoted Leydig cell repair and reduced damage induced by a HFD, suggesting that vitamin E is an important dietary component to mitigate the negative effects of a high fat diet.","PeriodicalId":243288,"journal":{"name":"Journal of obesity and weight loss therapy","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Therapeutic Effect of Vitamin E on Testicular Tissue Damage Caused by Obesity\",\"authors\":\"A. G. Alkushi, Naser A. ElSawy, M. HijaziM, Eslam A. Header, Hataba Aa\",\"doi\":\"10.4172/2165-7904.1000320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Obesity can adversely affect overall health, leading to reduced life expectancy and/or an increase in the number of health problems. Meanwhile, alterations in testicular metabolism induced by high-energy diets (HED) may induce mitochondrial dysfunction, which is closely associated to reactive oxygen species (ROS) and oxidative stress. Reactive oxygen species (ROS)-mediated damage to sperm is a significant contributing pathology in 30–80% of infertility cases. Vitamin E is considered to be the most effective liposolouble antioxidant found in biological systems. Here we evaluated the protective role of vitamin E against obesity-induced morphological changes in testes from albino rats fed different diets. Animals were divided into four groups: Group 1: standard controlled diet (SCD); Group 2: positive control group fed a high-fat diet (HFD); Group 3: αTF+HFD fed HFD supplemented with 100 mg/kg vitamin E (αTF); Group 4: αTF+SCD, fed 100 mg/kg αTF and SCD. Rats were weighed before and after the 10 week feeding period to determine changes in body weight (BWG %). After collecting blood from an intracardiac puncture under deep anesthesia, all animals were sacrificed and samples were analyzed by light microscopy. A HFD appeared to cause spermatocyte and Leydig cell damage, as well as decreases in testicular weight and function and testosterone production. Vitamin E supplementation promoted Leydig cell repair and reduced damage induced by a HFD, suggesting that vitamin E is an important dietary component to mitigate the negative effects of a high fat diet.\",\"PeriodicalId\":243288,\"journal\":{\"name\":\"Journal of obesity and weight loss therapy\",\"volume\":\"133 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of obesity and weight loss therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2165-7904.1000320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of obesity and weight loss therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2165-7904.1000320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Therapeutic Effect of Vitamin E on Testicular Tissue Damage Caused by Obesity
Obesity can adversely affect overall health, leading to reduced life expectancy and/or an increase in the number of health problems. Meanwhile, alterations in testicular metabolism induced by high-energy diets (HED) may induce mitochondrial dysfunction, which is closely associated to reactive oxygen species (ROS) and oxidative stress. Reactive oxygen species (ROS)-mediated damage to sperm is a significant contributing pathology in 30–80% of infertility cases. Vitamin E is considered to be the most effective liposolouble antioxidant found in biological systems. Here we evaluated the protective role of vitamin E against obesity-induced morphological changes in testes from albino rats fed different diets. Animals were divided into four groups: Group 1: standard controlled diet (SCD); Group 2: positive control group fed a high-fat diet (HFD); Group 3: αTF+HFD fed HFD supplemented with 100 mg/kg vitamin E (αTF); Group 4: αTF+SCD, fed 100 mg/kg αTF and SCD. Rats were weighed before and after the 10 week feeding period to determine changes in body weight (BWG %). After collecting blood from an intracardiac puncture under deep anesthesia, all animals were sacrificed and samples were analyzed by light microscopy. A HFD appeared to cause spermatocyte and Leydig cell damage, as well as decreases in testicular weight and function and testosterone production. Vitamin E supplementation promoted Leydig cell repair and reduced damage induced by a HFD, suggesting that vitamin E is an important dietary component to mitigate the negative effects of a high fat diet.