序列到序列学习的语义匹配

Ruiyi Zhang, Changyou Chen, Xinyuan Zhang, Ke Bai, L. Carin
{"title":"序列到序列学习的语义匹配","authors":"Ruiyi Zhang, Changyou Chen, Xinyuan Zhang, Ke Bai, L. Carin","doi":"10.18653/v1/2020.findings-emnlp.21","DOIUrl":null,"url":null,"abstract":"In sequence-to-sequence models, classical optimal transport (OT) can be applied to semantically match generated sentences with target sentences. However, in non-parallel settings, target sentences are usually unavailable. To tackle this issue without losing the benefits of classical OT, we present a semantic matching scheme based on the Optimal Partial Transport (OPT). Specifically, our approach partially matches semantically meaningful words between source and partial target sequences. To overcome the difficulty of detecting active regions in OPT (corresponding to the words needed to be matched), we further exploit prior knowledge to perform partial matching. Extensive experiments are conducted to evaluate the proposed approach, showing consistent improvements over sequence-to-sequence tasks.","PeriodicalId":321839,"journal":{"name":"Findings of the Association for Computational Linguistics: EMNLP 2020","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Semantic Matching for Sequence-to-Sequence Learning\",\"authors\":\"Ruiyi Zhang, Changyou Chen, Xinyuan Zhang, Ke Bai, L. Carin\",\"doi\":\"10.18653/v1/2020.findings-emnlp.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In sequence-to-sequence models, classical optimal transport (OT) can be applied to semantically match generated sentences with target sentences. However, in non-parallel settings, target sentences are usually unavailable. To tackle this issue without losing the benefits of classical OT, we present a semantic matching scheme based on the Optimal Partial Transport (OPT). Specifically, our approach partially matches semantically meaningful words between source and partial target sequences. To overcome the difficulty of detecting active regions in OPT (corresponding to the words needed to be matched), we further exploit prior knowledge to perform partial matching. Extensive experiments are conducted to evaluate the proposed approach, showing consistent improvements over sequence-to-sequence tasks.\",\"PeriodicalId\":321839,\"journal\":{\"name\":\"Findings of the Association for Computational Linguistics: EMNLP 2020\",\"volume\":\"196 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Findings of the Association for Computational Linguistics: EMNLP 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2020.findings-emnlp.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Findings of the Association for Computational Linguistics: EMNLP 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.findings-emnlp.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在序列到序列模型中,经典的最优传输(OT)可以应用于生成句子与目标句子的语义匹配。然而,在非平行环境中,目标句通常是不可用的。为了解决这一问题而不失去经典OT的优势,我们提出了一种基于最优部分传输(OPT)的语义匹配方案。具体来说,我们的方法在源序列和部分目标序列之间部分匹配语义上有意义的单词。为了克服检测OPT中活跃区域(对应于需要匹配的单词)的困难,我们进一步利用先验知识进行部分匹配。进行了广泛的实验来评估所提出的方法,显示出对序列到序列任务的一致改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic Matching for Sequence-to-Sequence Learning
In sequence-to-sequence models, classical optimal transport (OT) can be applied to semantically match generated sentences with target sentences. However, in non-parallel settings, target sentences are usually unavailable. To tackle this issue without losing the benefits of classical OT, we present a semantic matching scheme based on the Optimal Partial Transport (OPT). Specifically, our approach partially matches semantically meaningful words between source and partial target sequences. To overcome the difficulty of detecting active regions in OPT (corresponding to the words needed to be matched), we further exploit prior knowledge to perform partial matching. Extensive experiments are conducted to evaluate the proposed approach, showing consistent improvements over sequence-to-sequence tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信