{"title":"关于w1,2空间上的微分算子和fredholm算子","authors":"M. Egwurube, E. Garba, Bo Ovelami","doi":"10.4314/GJMAS.V3I1.21348","DOIUrl":null,"url":null,"abstract":"A selfadjoint differential operator defined over a closed and bounded interval on Sobolev space which is a dense linear subspace of a Hilbert space over the same interval is considered and shown to be a Fredholm operator with index zero. KEY WORDS: Sobolev space, Hilbert space, dense subspace, Fredholm operator Global Jnl of Mathematical Sciences Vol. 31) 2004: 27-34","PeriodicalId":126381,"journal":{"name":"Global Journal of Mathematical Sciences","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON DIFFERENTIAL OPERATORS ON W 1,2 SPACE AND FREDHOLM OPERATORS\",\"authors\":\"M. Egwurube, E. Garba, Bo Ovelami\",\"doi\":\"10.4314/GJMAS.V3I1.21348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A selfadjoint differential operator defined over a closed and bounded interval on Sobolev space which is a dense linear subspace of a Hilbert space over the same interval is considered and shown to be a Fredholm operator with index zero. KEY WORDS: Sobolev space, Hilbert space, dense subspace, Fredholm operator Global Jnl of Mathematical Sciences Vol. 31) 2004: 27-34\",\"PeriodicalId\":126381,\"journal\":{\"name\":\"Global Journal of Mathematical Sciences\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/GJMAS.V3I1.21348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/GJMAS.V3I1.21348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ON DIFFERENTIAL OPERATORS ON W 1,2 SPACE AND FREDHOLM OPERATORS
A selfadjoint differential operator defined over a closed and bounded interval on Sobolev space which is a dense linear subspace of a Hilbert space over the same interval is considered and shown to be a Fredholm operator with index zero. KEY WORDS: Sobolev space, Hilbert space, dense subspace, Fredholm operator Global Jnl of Mathematical Sciences Vol. 31) 2004: 27-34