汉语语法错误的条件随机场诊断

Shih-Hung Wu, Po-Lin Chen, Liang-Pu Chen, Ping-Che Yang, Ren-Dar Yang
{"title":"汉语语法错误的条件随机场诊断","authors":"Shih-Hung Wu, Po-Lin Chen, Liang-Pu Chen, Ping-Che Yang, Ren-Dar Yang","doi":"10.18653/v1/W15-4402","DOIUrl":null,"url":null,"abstract":"This paper reports how to build a Chinese Grammatical Error Diagnosis system based on the conditional random fields (CRF). The system can find four types of grammatical errors in learners’ essays. The four types or errors are redundant words, missing words, bad word selection, and disorder words. Our system presents the best false positive rate in 2015 NLP-TEA-2 CGED shared task, and also the best precision rate in three diagnosis levels.","PeriodicalId":316430,"journal":{"name":"NLP-TEA@ACL/IJCNLP","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Chinese Grammatical Error Diagnosis by Conditional Random Fields\",\"authors\":\"Shih-Hung Wu, Po-Lin Chen, Liang-Pu Chen, Ping-Che Yang, Ren-Dar Yang\",\"doi\":\"10.18653/v1/W15-4402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports how to build a Chinese Grammatical Error Diagnosis system based on the conditional random fields (CRF). The system can find four types of grammatical errors in learners’ essays. The four types or errors are redundant words, missing words, bad word selection, and disorder words. Our system presents the best false positive rate in 2015 NLP-TEA-2 CGED shared task, and also the best precision rate in three diagnosis levels.\",\"PeriodicalId\":316430,\"journal\":{\"name\":\"NLP-TEA@ACL/IJCNLP\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NLP-TEA@ACL/IJCNLP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W15-4402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NLP-TEA@ACL/IJCNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W15-4402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文介绍了如何建立一个基于条件随机场的汉语语法错误诊断系统。该系统可以在学习者的文章中发现四种语法错误。这四种类型的错误分别是冗余词、缺词、选词不当和无序词。该系统在2015年NLP-TEA-2 CGED共享任务中假阳性率最高,在三个诊断级别中准确率最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chinese Grammatical Error Diagnosis by Conditional Random Fields
This paper reports how to build a Chinese Grammatical Error Diagnosis system based on the conditional random fields (CRF). The system can find four types of grammatical errors in learners’ essays. The four types or errors are redundant words, missing words, bad word selection, and disorder words. Our system presents the best false positive rate in 2015 NLP-TEA-2 CGED shared task, and also the best precision rate in three diagnosis levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信