涡旋光束在离散散射介质中的传播

I. Lukin
{"title":"涡旋光束在离散散射介质中的传播","authors":"I. Lukin","doi":"10.1117/12.2644942","DOIUrl":null,"url":null,"abstract":"The transverse mutual coherence function of the second order of the field of optical beam propagating in a discrete scattering medium with particles, whose sizes are large compared with a wavelength of optical radiation, is described by the integral equation. It is shown that when certain conditions are met, this integral equation turns into a differential equation. Using the analytical solution of this differential equation, a numerical analysis of the behavior of the mean intensity of the Gaussian, hollow Gaussian, Gaussian beam with a vortex phase and vortex Gaussian beams is performed.","PeriodicalId":217776,"journal":{"name":"Atmospheric and Ocean Optics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Propagation of vortex beams in discrete scattering media\",\"authors\":\"I. Lukin\",\"doi\":\"10.1117/12.2644942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transverse mutual coherence function of the second order of the field of optical beam propagating in a discrete scattering medium with particles, whose sizes are large compared with a wavelength of optical radiation, is described by the integral equation. It is shown that when certain conditions are met, this integral equation turns into a differential equation. Using the analytical solution of this differential equation, a numerical analysis of the behavior of the mean intensity of the Gaussian, hollow Gaussian, Gaussian beam with a vortex phase and vortex Gaussian beams is performed.\",\"PeriodicalId\":217776,\"journal\":{\"name\":\"Atmospheric and Ocean Optics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric and Ocean Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2644942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Ocean Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2644942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用积分方程描述了光束在具有比光辐射波长大的粒子的离散散射介质中传播的二阶场的横向互相干函数。结果表明,当满足一定条件时,该积分方程可转化为微分方程。利用该微分方程的解析解,对高斯光束、空心高斯光束、具有涡相的高斯光束和涡相高斯光束的平均强度特性进行了数值分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Propagation of vortex beams in discrete scattering media
The transverse mutual coherence function of the second order of the field of optical beam propagating in a discrete scattering medium with particles, whose sizes are large compared with a wavelength of optical radiation, is described by the integral equation. It is shown that when certain conditions are met, this integral equation turns into a differential equation. Using the analytical solution of this differential equation, a numerical analysis of the behavior of the mean intensity of the Gaussian, hollow Gaussian, Gaussian beam with a vortex phase and vortex Gaussian beams is performed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信