90°背靠背弯在循环弯曲和稳定压力下的循环塑性行为

N. Cho, Haofeng Chen
{"title":"90°背靠背弯在循环弯曲和稳定压力下的循环塑性行为","authors":"N. Cho, Haofeng Chen","doi":"10.1115/ICONE26-82386","DOIUrl":null,"url":null,"abstract":"Back-to-back pipe bends are widely adopted applications in many industries including nuclear sectors. Evaluation of their load bearing capability under complex cyclic loading is very important. Recently, a couple of research reported shakedown boundary of a 90° back-to-back pipe bends by adopting a conservative approach but no comprehensive post yield structural behaviors have been dealt with. In this research the concerning pipe bends subjected to cyclic opening in-plane (IP)/out-of-plane (OP) bending and steady internal pressures are analyzed to construct shakedown and ratchet limit boundary by means of the Linear Matching Method. Analyzed results present that the concerning pipe bends under out-of-plane bending has higher resistance to cyclic bending than under in-plane bending. In additions, the out-of-plane bending causes very small alternating plasticity areas, unlike the in-plane bending. Full cyclic incremental analyses known as step-by-step analysis are performed to verify the structural responses either side of each boundary and confirm correct responses. Parametric studies are carried out with respect to changes in geometry of the concerning pipe bends subjected to the same loading, and semi-empirical equations are derived from relationships of the reverse plasticity limit and the limit pressure with the bend characteristic. This paper offers broad understandings of structural responses of the 90° back-to-back pipe bends under the complex cyclic loading as well as providing key points to be considered for the life assessment of the piping system.","PeriodicalId":289940,"journal":{"name":"Volume 9: Student Paper Competition","volume":"662 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cyclic Plasticity Behavior of 90° Back-to-Back Pipe Bends Under Cyclic Bending and Steady Pressure\",\"authors\":\"N. Cho, Haofeng Chen\",\"doi\":\"10.1115/ICONE26-82386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Back-to-back pipe bends are widely adopted applications in many industries including nuclear sectors. Evaluation of their load bearing capability under complex cyclic loading is very important. Recently, a couple of research reported shakedown boundary of a 90° back-to-back pipe bends by adopting a conservative approach but no comprehensive post yield structural behaviors have been dealt with. In this research the concerning pipe bends subjected to cyclic opening in-plane (IP)/out-of-plane (OP) bending and steady internal pressures are analyzed to construct shakedown and ratchet limit boundary by means of the Linear Matching Method. Analyzed results present that the concerning pipe bends under out-of-plane bending has higher resistance to cyclic bending than under in-plane bending. In additions, the out-of-plane bending causes very small alternating plasticity areas, unlike the in-plane bending. Full cyclic incremental analyses known as step-by-step analysis are performed to verify the structural responses either side of each boundary and confirm correct responses. Parametric studies are carried out with respect to changes in geometry of the concerning pipe bends subjected to the same loading, and semi-empirical equations are derived from relationships of the reverse plasticity limit and the limit pressure with the bend characteristic. This paper offers broad understandings of structural responses of the 90° back-to-back pipe bends under the complex cyclic loading as well as providing key points to be considered for the life assessment of the piping system.\",\"PeriodicalId\":289940,\"journal\":{\"name\":\"Volume 9: Student Paper Competition\",\"volume\":\"662 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Student Paper Competition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ICONE26-82386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Student Paper Competition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICONE26-82386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

背靠背弯管被广泛应用于包括核部门在内的许多行业。其在复杂循环荷载作用下的承载能力评价具有重要意义。最近,一些研究报道了采用保守方法求解90°背靠背弯的安定边界,但没有全面处理屈服后的结构行为。本文采用线性匹配的方法,对受循环开度面内/面外弯曲和稳态内压作用的相关弯头进行了分析,建立了安定和棘轮极限边界。分析结果表明,面外弯曲弯管比面内弯曲弯管具有更高的循环弯曲抗力。此外,与面内弯曲不同,面外弯曲产生的交变塑性区域非常小。执行全循环增量分析,即逐步分析,以验证每个边界两侧的结构响应并确认正确的响应。在相同载荷作用下,对相关弯头的几何形状变化进行了参数化研究,并根据反向塑性极限和极限压力与弯头特性的关系推导了半经验方程。本文对复杂循环荷载作用下90°背对背弯管的结构响应有了广泛的认识,并为管道系统的寿命评估提供了需要考虑的要点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyclic Plasticity Behavior of 90° Back-to-Back Pipe Bends Under Cyclic Bending and Steady Pressure
Back-to-back pipe bends are widely adopted applications in many industries including nuclear sectors. Evaluation of their load bearing capability under complex cyclic loading is very important. Recently, a couple of research reported shakedown boundary of a 90° back-to-back pipe bends by adopting a conservative approach but no comprehensive post yield structural behaviors have been dealt with. In this research the concerning pipe bends subjected to cyclic opening in-plane (IP)/out-of-plane (OP) bending and steady internal pressures are analyzed to construct shakedown and ratchet limit boundary by means of the Linear Matching Method. Analyzed results present that the concerning pipe bends under out-of-plane bending has higher resistance to cyclic bending than under in-plane bending. In additions, the out-of-plane bending causes very small alternating plasticity areas, unlike the in-plane bending. Full cyclic incremental analyses known as step-by-step analysis are performed to verify the structural responses either side of each boundary and confirm correct responses. Parametric studies are carried out with respect to changes in geometry of the concerning pipe bends subjected to the same loading, and semi-empirical equations are derived from relationships of the reverse plasticity limit and the limit pressure with the bend characteristic. This paper offers broad understandings of structural responses of the 90° back-to-back pipe bends under the complex cyclic loading as well as providing key points to be considered for the life assessment of the piping system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信