最小体积椭球缩放到包含一个切线球,应用于完整性监测

J. Rife, D. Schuldt
{"title":"最小体积椭球缩放到包含一个切线球,应用于完整性监测","authors":"J. Rife, D. Schuldt","doi":"10.1109/PLANS.2014.6851390","DOIUrl":null,"url":null,"abstract":"An ellipsoid bound is introduced and proven to be a tight and conservative approximation of a sphere to which it is tangent. The bounding ellipsoid is constructed with a fixed shape that can be scaled arbitrarily (so, for example, the ellipsoid shape matches the contours of a given probability density function). The ellipsoid bound is proven conservative in that the bound always contains the sphere to which it is tangent. The ellipsoid bound is proven tight in that its volume is the minimum guaranteeing conservative bounding. Applications for the ellipsoid bound include analysis of vector integrity monitors with nominally chi-square distributions.","PeriodicalId":371808,"journal":{"name":"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Minimum volume ellipsoid scaled to contain a tangent sphere, with application to integrity monitoring\",\"authors\":\"J. Rife, D. Schuldt\",\"doi\":\"10.1109/PLANS.2014.6851390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An ellipsoid bound is introduced and proven to be a tight and conservative approximation of a sphere to which it is tangent. The bounding ellipsoid is constructed with a fixed shape that can be scaled arbitrarily (so, for example, the ellipsoid shape matches the contours of a given probability density function). The ellipsoid bound is proven conservative in that the bound always contains the sphere to which it is tangent. The ellipsoid bound is proven tight in that its volume is the minimum guaranteeing conservative bounding. Applications for the ellipsoid bound include analysis of vector integrity monitors with nominally chi-square distributions.\",\"PeriodicalId\":371808,\"journal\":{\"name\":\"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS.2014.6851390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.2014.6851390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

引入了一个椭球界,并证明了它是与它相切的球体的紧而保守的近似。边界椭球是用可以任意缩放的固定形状构造的(例如,椭球形状与给定概率密度函数的轮廓相匹配)。椭球界被证明是保守的,因为它总是包含与它相切的球体。证明椭球界是紧的,因为它的体积是保证保守边界的最小值。椭球界的应用包括分析名义上有卡方分布的矢量完整性监视器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimum volume ellipsoid scaled to contain a tangent sphere, with application to integrity monitoring
An ellipsoid bound is introduced and proven to be a tight and conservative approximation of a sphere to which it is tangent. The bounding ellipsoid is constructed with a fixed shape that can be scaled arbitrarily (so, for example, the ellipsoid shape matches the contours of a given probability density function). The ellipsoid bound is proven conservative in that the bound always contains the sphere to which it is tangent. The ellipsoid bound is proven tight in that its volume is the minimum guaranteeing conservative bounding. Applications for the ellipsoid bound include analysis of vector integrity monitors with nominally chi-square distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信