监控视频中人的自动标注

D. Hansen, B. K. Mortensen, P. Duizer, Jens R. Andersen, T. Moeslund
{"title":"监控视频中人的自动标注","authors":"D. Hansen, B. K. Mortensen, P. Duizer, Jens R. Andersen, T. Moeslund","doi":"10.1109/CRV.2007.12","DOIUrl":null,"url":null,"abstract":"In this paper we present a system for automatic annotation of humans passing a surveillance camera. Each human has 4 associated annotations: the primary color of the clothing, the height, and focus of attention. The annotation occurs after robust background subtraction based on a Codebook representation. The primary colors of the clothing are estimated by grouping similar pixels according to a body model. The height is estimated based on a 3D mapping using the head and feet. Lastly, the focus of attention is defined as the overall direction of the head, which is estimated using changes in intensity at four different positions. Results show successful detection and hence successful annotation for most test sequences.","PeriodicalId":304254,"journal":{"name":"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Automatic Annotation of Humans in Surveillance Video\",\"authors\":\"D. Hansen, B. K. Mortensen, P. Duizer, Jens R. Andersen, T. Moeslund\",\"doi\":\"10.1109/CRV.2007.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a system for automatic annotation of humans passing a surveillance camera. Each human has 4 associated annotations: the primary color of the clothing, the height, and focus of attention. The annotation occurs after robust background subtraction based on a Codebook representation. The primary colors of the clothing are estimated by grouping similar pixels according to a body model. The height is estimated based on a 3D mapping using the head and feet. Lastly, the focus of attention is defined as the overall direction of the head, which is estimated using changes in intensity at four different positions. Results show successful detection and hence successful annotation for most test sequences.\",\"PeriodicalId\":304254,\"journal\":{\"name\":\"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)\",\"volume\":\"151 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2007.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2007.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

本文介绍了一种对经过监控摄像机的人员进行自动标注的系统。每个人都有4个相关的注释:衣服的原色、身高和注意力的焦点。在基于Codebook表示的稳健背景减法之后发生注释。衣服的原色是通过根据身体模型分组相似的像素来估计的。高度是根据头部和脚的3D映射估计的。最后,注意力的焦点被定义为头部的整体方向,这是使用四个不同位置的强度变化来估计的。结果表明,大多数测试序列的检测和注释都是成功的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Annotation of Humans in Surveillance Video
In this paper we present a system for automatic annotation of humans passing a surveillance camera. Each human has 4 associated annotations: the primary color of the clothing, the height, and focus of attention. The annotation occurs after robust background subtraction based on a Codebook representation. The primary colors of the clothing are estimated by grouping similar pixels according to a body model. The height is estimated based on a 3D mapping using the head and feet. Lastly, the focus of attention is defined as the overall direction of the head, which is estimated using changes in intensity at four different positions. Results show successful detection and hence successful annotation for most test sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信