利用Chernoff信息对高斯混合模型进行鲁棒、分布式融合的实证研究

S. Julier
{"title":"利用Chernoff信息对高斯混合模型进行鲁棒、分布式融合的实证研究","authors":"S. Julier","doi":"10.1109/ICIF.2006.301755","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of developing algorithms for the distributed fusion of Gaussian mixture models through the use of Chernoff information. We derive a first order approximation and show that, in a distributed tracking problem in which sensor nodes are equipped with only range-only or bearing-only sensors, it yields consistent estimates","PeriodicalId":248061,"journal":{"name":"2006 9th International Conference on Information Fusion","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":"{\"title\":\"An Empirical Study into the Use of Chernoff Information for Robust, Distributed Fusion of Gaussian Mixture Models\",\"authors\":\"S. Julier\",\"doi\":\"10.1109/ICIF.2006.301755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the problem of developing algorithms for the distributed fusion of Gaussian mixture models through the use of Chernoff information. We derive a first order approximation and show that, in a distributed tracking problem in which sensor nodes are equipped with only range-only or bearing-only sensors, it yields consistent estimates\",\"PeriodicalId\":248061,\"journal\":{\"name\":\"2006 9th International Conference on Information Fusion\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"111\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 9th International Conference on Information Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2006.301755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 9th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2006.301755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 111

摘要

本文研究了利用Chernoff信息开发高斯混合模型分布式融合算法的问题。我们推导了一阶近似,并表明,在传感器节点仅配备距离或方位传感器的分布式跟踪问题中,它产生一致的估计
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Empirical Study into the Use of Chernoff Information for Robust, Distributed Fusion of Gaussian Mixture Models
This paper considers the problem of developing algorithms for the distributed fusion of Gaussian mixture models through the use of Chernoff information. We derive a first order approximation and show that, in a distributed tracking problem in which sensor nodes are equipped with only range-only or bearing-only sensors, it yields consistent estimates
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信