FuzzyProbSim:模糊概率作为相似性度量

A. Ralescu, S. Visa, Stefana Popovici
{"title":"FuzzyProbSim:模糊概率作为相似性度量","authors":"A. Ralescu, S. Visa, Stefana Popovici","doi":"10.1109/NAFIPS.2010.5548188","DOIUrl":null,"url":null,"abstract":"This study investigates a unified robust measures of similarity applicable in many domains and across many dimensions of data. Given a distance or discrepancy measure on a domain, the similarity of two values in this domain is defined as the probability that any pair of values from that domain are more different (at a larger distance) than these two values are. Fuzzy sets are introduced to make this definition more sensitive to quantitative difference. Combination across domains is also discussed.","PeriodicalId":394892,"journal":{"name":"2010 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"659 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FuzzyProbSim: Fuzzy probability as similarity measure\",\"authors\":\"A. Ralescu, S. Visa, Stefana Popovici\",\"doi\":\"10.1109/NAFIPS.2010.5548188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates a unified robust measures of similarity applicable in many domains and across many dimensions of data. Given a distance or discrepancy measure on a domain, the similarity of two values in this domain is defined as the probability that any pair of values from that domain are more different (at a larger distance) than these two values are. Fuzzy sets are introduced to make this definition more sensitive to quantitative difference. Combination across domains is also discussed.\",\"PeriodicalId\":394892,\"journal\":{\"name\":\"2010 Annual Meeting of the North American Fuzzy Information Processing Society\",\"volume\":\"659 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Annual Meeting of the North American Fuzzy Information Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.2010.5548188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2010.5548188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了一种适用于许多领域和跨多个数据维度的统一的健壮的相似性度量。给定一个域上的距离或差异度量,该域中两个值的相似性被定义为该域中任何一对值比这两个值更不同(距离更大)的概率。引入模糊集使该定义对数量差异更加敏感。还讨论了跨域组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FuzzyProbSim: Fuzzy probability as similarity measure
This study investigates a unified robust measures of similarity applicable in many domains and across many dimensions of data. Given a distance or discrepancy measure on a domain, the similarity of two values in this domain is defined as the probability that any pair of values from that domain are more different (at a larger distance) than these two values are. Fuzzy sets are introduced to make this definition more sensitive to quantitative difference. Combination across domains is also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信