基于先验知识提取和指导的人脸图像痤疮严重程度分级

Yi Lin, Jingchi Jiang, Dongxin Chen, Zhaoyang Ma, Yi Guan, Xiguang Liu, Haiyan You, Jing Yang, Xue Cheng
{"title":"基于先验知识提取和指导的人脸图像痤疮严重程度分级","authors":"Yi Lin, Jingchi Jiang, Dongxin Chen, Zhaoyang Ma, Yi Guan, Xiguang Liu, Haiyan You, Jing Yang, Xue Cheng","doi":"10.1109/BIBM55620.2022.9995101","DOIUrl":null,"url":null,"abstract":"Acne Vulgaris seriously affects people’s daily life. In this paper, we propose a face acne grading framework which is a new paradigm to solve the image classification problem where the number and type of small objects are the evidence. This framework includes two components: prior knowledge extraction and prior knowledge guided network. The prior knowledge extraction uses an excellent segmentation method to predict the lesion areas as prior knowledge. The prior knowledge guided network fuses the prior knowledge and its corresponding image to grade the severity. The experiment results demonstrate that our framework achieves the state-of-the-art and diagnosis level of dermatologists.","PeriodicalId":210337,"journal":{"name":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Acne Severity Grading on Face Images via Extraction and Guidance of Prior Knowledge\",\"authors\":\"Yi Lin, Jingchi Jiang, Dongxin Chen, Zhaoyang Ma, Yi Guan, Xiguang Liu, Haiyan You, Jing Yang, Xue Cheng\",\"doi\":\"10.1109/BIBM55620.2022.9995101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acne Vulgaris seriously affects people’s daily life. In this paper, we propose a face acne grading framework which is a new paradigm to solve the image classification problem where the number and type of small objects are the evidence. This framework includes two components: prior knowledge extraction and prior knowledge guided network. The prior knowledge extraction uses an excellent segmentation method to predict the lesion areas as prior knowledge. The prior knowledge guided network fuses the prior knowledge and its corresponding image to grade the severity. The experiment results demonstrate that our framework achieves the state-of-the-art and diagnosis level of dermatologists.\",\"PeriodicalId\":210337,\"journal\":{\"name\":\"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM55620.2022.9995101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM55620.2022.9995101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

寻常痤疮严重影响人们的日常生活。本文提出了一种面部痤疮分级框架,为解决以小目标数量和类型为依据的图像分类问题提供了一种新的范式。该框架包括两个部分:先验知识提取和先验知识引导网络。先验知识提取采用一种优秀的分割方法来预测病变区域作为先验知识。先验知识引导网络将先验知识与其对应的图像进行融合,对严重程度进行分级。实验结果表明,我们的框架达到了皮肤科医生的先进水平和诊断水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acne Severity Grading on Face Images via Extraction and Guidance of Prior Knowledge
Acne Vulgaris seriously affects people’s daily life. In this paper, we propose a face acne grading framework which is a new paradigm to solve the image classification problem where the number and type of small objects are the evidence. This framework includes two components: prior knowledge extraction and prior knowledge guided network. The prior knowledge extraction uses an excellent segmentation method to predict the lesion areas as prior knowledge. The prior knowledge guided network fuses the prior knowledge and its corresponding image to grade the severity. The experiment results demonstrate that our framework achieves the state-of-the-art and diagnosis level of dermatologists.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信