基于隐半马尔可夫模型和RSSI数据的制造过程建模

S. Vorapojpisut, Karishma Agrawal
{"title":"基于隐半马尔可夫模型和RSSI数据的制造过程建模","authors":"S. Vorapojpisut, Karishma Agrawal","doi":"10.1109/iSAI-NLP56921.2022.9960270","DOIUrl":null,"url":null,"abstract":"Temporal behaviors, e.g., cycle time and throughput, are among essential key performance indicators for the management of manufacturing processes. This paper presents a statistical model that captures the processing time spent throughout a production line using RSSI data acquired from Bluetooth Low Energy (BLE) network. First, a Hidden Semi-Markov Model (HSMM) is formulated based on the characteristics of production processes. Then, a learning problem is discussed for the re-estimation of state duration probability distribution using the forward-backward algorithm. The Kullback- Leibler Divergence is used to verify the accuracy by comparing between the original and estimated state duration probability distribution with a score of 0.0573. Finally, physical experiment was performed to evaluate the proposed method.","PeriodicalId":399019,"journal":{"name":"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","volume":"653 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling of Manufacturing Processes using Hidden Semi-Markov Model and RSSI data\",\"authors\":\"S. Vorapojpisut, Karishma Agrawal\",\"doi\":\"10.1109/iSAI-NLP56921.2022.9960270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temporal behaviors, e.g., cycle time and throughput, are among essential key performance indicators for the management of manufacturing processes. This paper presents a statistical model that captures the processing time spent throughout a production line using RSSI data acquired from Bluetooth Low Energy (BLE) network. First, a Hidden Semi-Markov Model (HSMM) is formulated based on the characteristics of production processes. Then, a learning problem is discussed for the re-estimation of state duration probability distribution using the forward-backward algorithm. The Kullback- Leibler Divergence is used to verify the accuracy by comparing between the original and estimated state duration probability distribution with a score of 0.0573. Finally, physical experiment was performed to evaluate the proposed method.\",\"PeriodicalId\":399019,\"journal\":{\"name\":\"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)\",\"volume\":\"653 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iSAI-NLP56921.2022.9960270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSAI-NLP56921.2022.9960270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

时间行为,如周期时间和吞吐量,是制造过程管理的关键绩效指标。本文提出了一个统计模型,该模型使用从蓝牙低功耗(BLE)网络获取的RSSI数据捕获整个生产线所花费的处理时间。首先,根据生产过程的特点建立了隐半马尔可夫模型(HSMM)。然后,讨论了使用前向-后向算法重新估计状态持续时间概率分布的学习问题。通过比较原始状态持续时间概率分布和估计状态持续时间概率分布,采用Kullback- Leibler散度来验证准确性,其分数为0.0573。最后,通过物理实验对该方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling of Manufacturing Processes using Hidden Semi-Markov Model and RSSI data
Temporal behaviors, e.g., cycle time and throughput, are among essential key performance indicators for the management of manufacturing processes. This paper presents a statistical model that captures the processing time spent throughout a production line using RSSI data acquired from Bluetooth Low Energy (BLE) network. First, a Hidden Semi-Markov Model (HSMM) is formulated based on the characteristics of production processes. Then, a learning problem is discussed for the re-estimation of state duration probability distribution using the forward-backward algorithm. The Kullback- Leibler Divergence is used to verify the accuracy by comparing between the original and estimated state duration probability distribution with a score of 0.0573. Finally, physical experiment was performed to evaluate the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信