{"title":"电液比例阀控缸系统的自调节动态补偿算法","authors":"Rui Mao, Xiwei Peng","doi":"10.1109/IHMSC.2014.195","DOIUrl":null,"url":null,"abstract":"Aiming at the nonlinear of the dead zone of electro-hydraulic proportional valve controlled cylinder system, a self-regulating dynamic compensation algorithm is proposed in this paper. Firstly, the mathematical model of the system is established and the causes of the system dead zone are analyzed. Finally, a control algorithm which can self-regulate the amount of compensation from the dead zone is proposed and the experimental verification is finished. Also, the comparison between the experimental results and the traditional static compensation algorithm results is made. Experimental results show that, compared with the static compensation, the step response is greatly improved by using the dynamic compensation algorithm and the interference from the dead zone to system control is reduced. The target that system can be quickly located with high accuracy is achieved.","PeriodicalId":370654,"journal":{"name":"2014 Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics","volume":"746 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Self-Regulating Dynamic Compensation Algorithm for Electro-hydraulic Proportional Valve Controlled Cylinder System\",\"authors\":\"Rui Mao, Xiwei Peng\",\"doi\":\"10.1109/IHMSC.2014.195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the nonlinear of the dead zone of electro-hydraulic proportional valve controlled cylinder system, a self-regulating dynamic compensation algorithm is proposed in this paper. Firstly, the mathematical model of the system is established and the causes of the system dead zone are analyzed. Finally, a control algorithm which can self-regulate the amount of compensation from the dead zone is proposed and the experimental verification is finished. Also, the comparison between the experimental results and the traditional static compensation algorithm results is made. Experimental results show that, compared with the static compensation, the step response is greatly improved by using the dynamic compensation algorithm and the interference from the dead zone to system control is reduced. The target that system can be quickly located with high accuracy is achieved.\",\"PeriodicalId\":370654,\"journal\":{\"name\":\"2014 Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"volume\":\"746 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IHMSC.2014.195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC.2014.195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Self-Regulating Dynamic Compensation Algorithm for Electro-hydraulic Proportional Valve Controlled Cylinder System
Aiming at the nonlinear of the dead zone of electro-hydraulic proportional valve controlled cylinder system, a self-regulating dynamic compensation algorithm is proposed in this paper. Firstly, the mathematical model of the system is established and the causes of the system dead zone are analyzed. Finally, a control algorithm which can self-regulate the amount of compensation from the dead zone is proposed and the experimental verification is finished. Also, the comparison between the experimental results and the traditional static compensation algorithm results is made. Experimental results show that, compared with the static compensation, the step response is greatly improved by using the dynamic compensation algorithm and the interference from the dead zone to system control is reduced. The target that system can be quickly located with high accuracy is achieved.