Manoj Kumar, V. Laxmi, M. Gaur, M. Daneshtalab, S. Ko, Mark Zwolinski
{"title":"用于3D noc的高度自适应和拥塞感知路由","authors":"Manoj Kumar, V. Laxmi, M. Gaur, M. Daneshtalab, S. Ko, Mark Zwolinski","doi":"10.1145/2591513.2591581","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel highly adaptive and congestion aware routing algorithm 3D meshes which is equally applicable to 2D meshes as well. The proposed algorithm allows cyclic dependencies in channel dependency graph (CDG) providing higher degree of adaptiveness. The algorithm uses congestion-aware channel selection strategy that results balanced distribution of traffic flows across the network. A packet follows non-minimal paths only when minimal paths are congested at the neighboring channels. The deadlock avoidance methodology adopted by our algorithm remains cost-efficient as it uses one extra virtual channel along each of Y and Z dimensions to achieve deadlock freedom.","PeriodicalId":272619,"journal":{"name":"ACM Great Lakes Symposium on VLSI","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Highly adaptive and congestion-aware routing for 3D NoCs\",\"authors\":\"Manoj Kumar, V. Laxmi, M. Gaur, M. Daneshtalab, S. Ko, Mark Zwolinski\",\"doi\":\"10.1145/2591513.2591581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel highly adaptive and congestion aware routing algorithm 3D meshes which is equally applicable to 2D meshes as well. The proposed algorithm allows cyclic dependencies in channel dependency graph (CDG) providing higher degree of adaptiveness. The algorithm uses congestion-aware channel selection strategy that results balanced distribution of traffic flows across the network. A packet follows non-minimal paths only when minimal paths are congested at the neighboring channels. The deadlock avoidance methodology adopted by our algorithm remains cost-efficient as it uses one extra virtual channel along each of Y and Z dimensions to achieve deadlock freedom.\",\"PeriodicalId\":272619,\"journal\":{\"name\":\"ACM Great Lakes Symposium on VLSI\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Great Lakes Symposium on VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2591513.2591581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2591513.2591581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Highly adaptive and congestion-aware routing for 3D NoCs
In this paper, we propose a novel highly adaptive and congestion aware routing algorithm 3D meshes which is equally applicable to 2D meshes as well. The proposed algorithm allows cyclic dependencies in channel dependency graph (CDG) providing higher degree of adaptiveness. The algorithm uses congestion-aware channel selection strategy that results balanced distribution of traffic flows across the network. A packet follows non-minimal paths only when minimal paths are congested at the neighboring channels. The deadlock avoidance methodology adopted by our algorithm remains cost-efficient as it uses one extra virtual channel along each of Y and Z dimensions to achieve deadlock freedom.