减少了FIR信道输入马尔可夫模型的盲均衡计算

L. White, S. Perreau, Pierre Duhamel
{"title":"减少了FIR信道输入马尔可夫模型的盲均衡计算","authors":"L. White, S. Perreau, Pierre Duhamel","doi":"10.1109/ICC.1995.524250","DOIUrl":null,"url":null,"abstract":"The paper deals with adaptive blind equalization for the transmission of digital modulated signals on an unknown dispersive channel with additive white gaussian noise. The observed signal being modeled as a hidden Markov model(HMM), the expectation-maximization (EM) algorithm can be used to realize both the channel identification and the estimation of the emitted symbols. The paper proposes a new on-line algorithm with reduced complexity. This algorithm, obtained as an approximate solution of the maximum likelihood (ML) problem via the EM sequential algorithm, has strong connections with decision feedback equalizers (DFE) using the recursive least square (RLS) Algorithm.","PeriodicalId":241383,"journal":{"name":"Proceedings IEEE International Conference on Communications ICC '95","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Reduced computation blind equalization for FIR channel input Markov models\",\"authors\":\"L. White, S. Perreau, Pierre Duhamel\",\"doi\":\"10.1109/ICC.1995.524250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper deals with adaptive blind equalization for the transmission of digital modulated signals on an unknown dispersive channel with additive white gaussian noise. The observed signal being modeled as a hidden Markov model(HMM), the expectation-maximization (EM) algorithm can be used to realize both the channel identification and the estimation of the emitted symbols. The paper proposes a new on-line algorithm with reduced complexity. This algorithm, obtained as an approximate solution of the maximum likelihood (ML) problem via the EM sequential algorithm, has strong connections with decision feedback equalizers (DFE) using the recursive least square (RLS) Algorithm.\",\"PeriodicalId\":241383,\"journal\":{\"name\":\"Proceedings IEEE International Conference on Communications ICC '95\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE International Conference on Communications ICC '95\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC.1995.524250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Conference on Communications ICC '95","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.1995.524250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

研究了加性高斯白噪声下未知色散信道上数字调制信号传输的自适应盲均衡问题。将观测信号建模为隐马尔可夫模型(HMM),利用期望最大化(EM)算法既可以实现信道识别,又可以实现发射信号的估计。本文提出了一种新的降低复杂度的在线算法。该算法是通过EM序列算法得到的最大似然(ML)问题的近似解,它与使用递归最小二乘(RLS)算法的决策反馈均衡器(DFE)有很强的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduced computation blind equalization for FIR channel input Markov models
The paper deals with adaptive blind equalization for the transmission of digital modulated signals on an unknown dispersive channel with additive white gaussian noise. The observed signal being modeled as a hidden Markov model(HMM), the expectation-maximization (EM) algorithm can be used to realize both the channel identification and the estimation of the emitted symbols. The paper proposes a new on-line algorithm with reduced complexity. This algorithm, obtained as an approximate solution of the maximum likelihood (ML) problem via the EM sequential algorithm, has strong connections with decision feedback equalizers (DFE) using the recursive least square (RLS) Algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信