部分更新NLMS算法的均值收敛分析

Jinhong Wu, M. Doroslovački
{"title":"部分更新NLMS算法的均值收敛分析","authors":"Jinhong Wu, M. Doroslovački","doi":"10.1109/CISS.2007.4298268","DOIUrl":null,"url":null,"abstract":"This paper discusses the convergence rates of partial update normalized least mean square (NLMS) algorithms for long, finite impulse response (FIR) adaptive filters. We specify the general form of convergence of tap weight vector's mean deviation for white Guassian input, and analyze several best known partial update algorithms' performance. These results are compared with the conventional NLMS algorithm. We further discuss the similarity in update effects of some partial update algorithms and proportionate-type NLMS algorithms. This theoretically demonstrates that for sparse impulse response system identification with white Guassian input, properly designed partial update NLMS algorithms, although need only a fraction of the fully updated NLMS algorithm's computational power, have the potential of achieving better performance than conventional NLMS.","PeriodicalId":151241,"journal":{"name":"2007 41st Annual Conference on Information Sciences and Systems","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Mean Convergence Analysis for Partial Update NLMS Algorithms\",\"authors\":\"Jinhong Wu, M. Doroslovački\",\"doi\":\"10.1109/CISS.2007.4298268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the convergence rates of partial update normalized least mean square (NLMS) algorithms for long, finite impulse response (FIR) adaptive filters. We specify the general form of convergence of tap weight vector's mean deviation for white Guassian input, and analyze several best known partial update algorithms' performance. These results are compared with the conventional NLMS algorithm. We further discuss the similarity in update effects of some partial update algorithms and proportionate-type NLMS algorithms. This theoretically demonstrates that for sparse impulse response system identification with white Guassian input, properly designed partial update NLMS algorithms, although need only a fraction of the fully updated NLMS algorithm's computational power, have the potential of achieving better performance than conventional NLMS.\",\"PeriodicalId\":151241,\"journal\":{\"name\":\"2007 41st Annual Conference on Information Sciences and Systems\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 41st Annual Conference on Information Sciences and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2007.4298268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 41st Annual Conference on Information Sciences and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2007.4298268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

讨论了长有限脉冲响应(FIR)自适应滤波器的部分更新归一化最小均方(NLMS)算法的收敛速度。给出了白高斯输入下抽头权向量均值偏差收敛的一般形式,并分析了几种最著名的部分更新算法的性能。这些结果与传统的NLMS算法进行了比较。我们进一步讨论了部分更新算法和比例型NLMS算法在更新效果上的相似性。这从理论上表明,对于具有白色高斯输入的稀疏脉冲响应系统识别,适当设计的部分更新NLMS算法虽然只需要完全更新NLMS算法计算能力的一小部分,但具有比传统NLMS更好的性能潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Mean Convergence Analysis for Partial Update NLMS Algorithms
This paper discusses the convergence rates of partial update normalized least mean square (NLMS) algorithms for long, finite impulse response (FIR) adaptive filters. We specify the general form of convergence of tap weight vector's mean deviation for white Guassian input, and analyze several best known partial update algorithms' performance. These results are compared with the conventional NLMS algorithm. We further discuss the similarity in update effects of some partial update algorithms and proportionate-type NLMS algorithms. This theoretically demonstrates that for sparse impulse response system identification with white Guassian input, properly designed partial update NLMS algorithms, although need only a fraction of the fully updated NLMS algorithm's computational power, have the potential of achieving better performance than conventional NLMS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信