变换区域分类的深度神经网络

Mamta Arora, Sanjeev Dhawan, Kulvinder Singh
{"title":"变换区域分类的深度神经网络","authors":"Mamta Arora, Sanjeev Dhawan, Kulvinder Singh","doi":"10.1109/ICSCCC.2018.8703327","DOIUrl":null,"url":null,"abstract":"The type of the treatment that a patient undergoes depends on the type of transformation zone of the cervix of patient. It is difficult to identify the thin line difference between the various types of transformation zones using naked eyes. The application of deep learning can help medical practitioners for identifying the type with confidence. The survival rate of cancer patient will be higher if the affected cervix is diagnosed early in pre-cancerous stage. In this paper we present our work in developing a ConvNet (Convolutional Neural Network) to classify the transformation zones using cervix images provided by Kaggle. Our proposed model uses fine tuned transfer learning approach. We suspect more image augmentation methods can help to improve the overall performance of the model.","PeriodicalId":148491,"journal":{"name":"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)","volume":"741 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Deep Neural Network for Transformation Zone Classification\",\"authors\":\"Mamta Arora, Sanjeev Dhawan, Kulvinder Singh\",\"doi\":\"10.1109/ICSCCC.2018.8703327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The type of the treatment that a patient undergoes depends on the type of transformation zone of the cervix of patient. It is difficult to identify the thin line difference between the various types of transformation zones using naked eyes. The application of deep learning can help medical practitioners for identifying the type with confidence. The survival rate of cancer patient will be higher if the affected cervix is diagnosed early in pre-cancerous stage. In this paper we present our work in developing a ConvNet (Convolutional Neural Network) to classify the transformation zones using cervix images provided by Kaggle. Our proposed model uses fine tuned transfer learning approach. We suspect more image augmentation methods can help to improve the overall performance of the model.\",\"PeriodicalId\":148491,\"journal\":{\"name\":\"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)\",\"volume\":\"741 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCCC.2018.8703327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCCC.2018.8703327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

患者接受的治疗类型取决于患者宫颈转化区的类型。用肉眼很难识别各类变换区的细线差别。深度学习的应用可以帮助医疗从业者更自信地识别类型。如果受影响的子宫颈在癌前阶段得到早期诊断,癌症患者的存活率会更高。在本文中,我们介绍了我们在使用Kaggle提供的宫颈图像开发卷积神经网络(卷积神经网络)来分类变换区域的工作。我们提出的模型使用微调迁移学习方法。我们怀疑更多的图像增强方法可以帮助提高模型的整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Neural Network for Transformation Zone Classification
The type of the treatment that a patient undergoes depends on the type of transformation zone of the cervix of patient. It is difficult to identify the thin line difference between the various types of transformation zones using naked eyes. The application of deep learning can help medical practitioners for identifying the type with confidence. The survival rate of cancer patient will be higher if the affected cervix is diagnosed early in pre-cancerous stage. In this paper we present our work in developing a ConvNet (Convolutional Neural Network) to classify the transformation zones using cervix images provided by Kaggle. Our proposed model uses fine tuned transfer learning approach. We suspect more image augmentation methods can help to improve the overall performance of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信