稀疏随机图的空间嵌入

N. Pitsianis, A. Iliopoulos, D. Floros, Xiaobai Sun
{"title":"稀疏随机图的空间嵌入","authors":"N. Pitsianis, A. Iliopoulos, D. Floros, Xiaobai Sun","doi":"10.1109/HPEC.2019.8916505","DOIUrl":null,"url":null,"abstract":"We introduce SG-t-SNE, a nonlinear method for embedding stochastic graphs/networks into d-dimensional spaces, d = 1, 2, 3, without requiring vertex features to reside in, or be transformed into, a metric space. Graphs/networks are relational data, prevalent in real-world applications. Graph embedding is fundamental to many graph analysis tasks, besides graph visualization. SG-t-SNE follows and builds upon the core principle of t-SNE, which is a widely used method for visualizing high-dimensional data. We also introduce SG-t-SNE-Π, a high-performance software for rapid d-dimensional embedding of large, sparse, stochastic graphs on personal computers with superior efficiency. It empowers SG-t-SNE with modern computing techniques exploiting matrix structures in tandem with memory architectures. We present elucidating graph embedding results with several synthetic graphs and real-world networks in this paper and its Supplementary Material.11Supplementary Material is at http://t-sne-pi.cs.duke.edu.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Spaceland Embedding of Sparse Stochastic Graphs\",\"authors\":\"N. Pitsianis, A. Iliopoulos, D. Floros, Xiaobai Sun\",\"doi\":\"10.1109/HPEC.2019.8916505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce SG-t-SNE, a nonlinear method for embedding stochastic graphs/networks into d-dimensional spaces, d = 1, 2, 3, without requiring vertex features to reside in, or be transformed into, a metric space. Graphs/networks are relational data, prevalent in real-world applications. Graph embedding is fundamental to many graph analysis tasks, besides graph visualization. SG-t-SNE follows and builds upon the core principle of t-SNE, which is a widely used method for visualizing high-dimensional data. We also introduce SG-t-SNE-Π, a high-performance software for rapid d-dimensional embedding of large, sparse, stochastic graphs on personal computers with superior efficiency. It empowers SG-t-SNE with modern computing techniques exploiting matrix structures in tandem with memory architectures. We present elucidating graph embedding results with several synthetic graphs and real-world networks in this paper and its Supplementary Material.11Supplementary Material is at http://t-sne-pi.cs.duke.edu.\",\"PeriodicalId\":184253,\"journal\":{\"name\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2019.8916505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们引入SG-t-SNE,这是一种将随机图/网络嵌入d维空间(d = 1,2,3)的非线性方法,不需要将顶点特征驻留在度量空间中或转换为度量空间。图/网络是关系数据,在实际应用中很普遍。除了图形可视化之外,图嵌入是许多图分析任务的基础。SG-t-SNE遵循并建立在t-SNE的核心原则之上,t-SNE是一种广泛使用的高维数据可视化方法。我们还介绍了SG-t-SNE-Π,这是一种高性能软件,用于在个人计算机上快速嵌入大型,稀疏,随机图形,具有卓越的效率。它使SG-t-SNE具有利用矩阵结构与内存体系结构相结合的现代计算技术。本文给出了几个合成图和真实网络的图嵌入结果及其补充材料。补充材料在http://t-sne-pi.cs.duke.edu。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spaceland Embedding of Sparse Stochastic Graphs
We introduce SG-t-SNE, a nonlinear method for embedding stochastic graphs/networks into d-dimensional spaces, d = 1, 2, 3, without requiring vertex features to reside in, or be transformed into, a metric space. Graphs/networks are relational data, prevalent in real-world applications. Graph embedding is fundamental to many graph analysis tasks, besides graph visualization. SG-t-SNE follows and builds upon the core principle of t-SNE, which is a widely used method for visualizing high-dimensional data. We also introduce SG-t-SNE-Π, a high-performance software for rapid d-dimensional embedding of large, sparse, stochastic graphs on personal computers with superior efficiency. It empowers SG-t-SNE with modern computing techniques exploiting matrix structures in tandem with memory architectures. We present elucidating graph embedding results with several synthetic graphs and real-world networks in this paper and its Supplementary Material.11Supplementary Material is at http://t-sne-pi.cs.duke.edu.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信