{"title":"时间积分条件下半线性分数阶扩散波方程的逆源问题","authors":"H. Lopushanska","doi":"10.31861/bmj2022.02.11","DOIUrl":null,"url":null,"abstract":"We study the inverse boundary value problem on determining a space-dependent component in the right-hand side of semilinear time fractional diffusion-wave equation. We find sufficient conditions for a time-local uniqueness of the solution under the time-integral additional condition\n\\[\\frac{1}{T}\\int_{0}^{T}u(x,t)\\eta_1(t)dt=\\Phi_1(x), \\;\\;\\;x\\in \\Omega\\subset \\Bbb R^n\\]\nwhere $u$ is the unknown solution of the first boundary value problem for such equation, $\\eta_1$ and $\\Phi_1$ are the given functions. We use the method of the Green's function.","PeriodicalId":196726,"journal":{"name":"Bukovinian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"INVERSE SOURCE PROBLEM FOR A SEMILINEAR FRACTIONAL DIFFUSION-WAVE EQUATION UNDER A TIME-INTEGRAL CONDITION\",\"authors\":\"H. Lopushanska\",\"doi\":\"10.31861/bmj2022.02.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the inverse boundary value problem on determining a space-dependent component in the right-hand side of semilinear time fractional diffusion-wave equation. We find sufficient conditions for a time-local uniqueness of the solution under the time-integral additional condition\\n\\\\[\\\\frac{1}{T}\\\\int_{0}^{T}u(x,t)\\\\eta_1(t)dt=\\\\Phi_1(x), \\\\;\\\\;\\\\;x\\\\in \\\\Omega\\\\subset \\\\Bbb R^n\\\\]\\nwhere $u$ is the unknown solution of the first boundary value problem for such equation, $\\\\eta_1$ and $\\\\Phi_1$ are the given functions. We use the method of the Green's function.\",\"PeriodicalId\":196726,\"journal\":{\"name\":\"Bukovinian Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bukovinian Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31861/bmj2022.02.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bukovinian Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31861/bmj2022.02.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
INVERSE SOURCE PROBLEM FOR A SEMILINEAR FRACTIONAL DIFFUSION-WAVE EQUATION UNDER A TIME-INTEGRAL CONDITION
We study the inverse boundary value problem on determining a space-dependent component in the right-hand side of semilinear time fractional diffusion-wave equation. We find sufficient conditions for a time-local uniqueness of the solution under the time-integral additional condition
\[\frac{1}{T}\int_{0}^{T}u(x,t)\eta_1(t)dt=\Phi_1(x), \;\;\;x\in \Omega\subset \Bbb R^n\]
where $u$ is the unknown solution of the first boundary value problem for such equation, $\eta_1$ and $\Phi_1$ are the given functions. We use the method of the Green's function.