时间积分条件下半线性分数阶扩散波方程的逆源问题

H. Lopushanska
{"title":"时间积分条件下半线性分数阶扩散波方程的逆源问题","authors":"H. Lopushanska","doi":"10.31861/bmj2022.02.11","DOIUrl":null,"url":null,"abstract":"We study the inverse boundary value problem on determining a space-dependent component in the right-hand side of semilinear time fractional diffusion-wave equation. We find sufficient conditions for a time-local uniqueness of the solution under the time-integral additional condition\n\\[\\frac{1}{T}\\int_{0}^{T}u(x,t)\\eta_1(t)dt=\\Phi_1(x), \\;\\;\\;x\\in \\Omega\\subset \\Bbb R^n\\]\nwhere $u$ is the unknown solution of the first boundary value problem for such equation, $\\eta_1$ and $\\Phi_1$ are the given functions. We use the method of the Green's function.","PeriodicalId":196726,"journal":{"name":"Bukovinian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"INVERSE SOURCE PROBLEM FOR A SEMILINEAR FRACTIONAL DIFFUSION-WAVE EQUATION UNDER A TIME-INTEGRAL CONDITION\",\"authors\":\"H. Lopushanska\",\"doi\":\"10.31861/bmj2022.02.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the inverse boundary value problem on determining a space-dependent component in the right-hand side of semilinear time fractional diffusion-wave equation. We find sufficient conditions for a time-local uniqueness of the solution under the time-integral additional condition\\n\\\\[\\\\frac{1}{T}\\\\int_{0}^{T}u(x,t)\\\\eta_1(t)dt=\\\\Phi_1(x), \\\\;\\\\;\\\\;x\\\\in \\\\Omega\\\\subset \\\\Bbb R^n\\\\]\\nwhere $u$ is the unknown solution of the first boundary value problem for such equation, $\\\\eta_1$ and $\\\\Phi_1$ are the given functions. We use the method of the Green's function.\",\"PeriodicalId\":196726,\"journal\":{\"name\":\"Bukovinian Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bukovinian Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31861/bmj2022.02.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bukovinian Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31861/bmj2022.02.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了半线性时间分数阶扩散波方程右侧空间相关分量的反边值问题。在时间积分附加条件\[\frac{1}{T}\int_{0}^{T}u(x,t)\eta_1(t)dt=\Phi_1(x), \;\;\;x\in \Omega\subset \Bbb R^n\]下,我们找到了解的时间局部唯一性的充分条件,其中$u$为该方程第一边值问题的未知解,$\eta_1$和$\Phi_1$为给定函数。我们用格林函数的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
INVERSE SOURCE PROBLEM FOR A SEMILINEAR FRACTIONAL DIFFUSION-WAVE EQUATION UNDER A TIME-INTEGRAL CONDITION
We study the inverse boundary value problem on determining a space-dependent component in the right-hand side of semilinear time fractional diffusion-wave equation. We find sufficient conditions for a time-local uniqueness of the solution under the time-integral additional condition \[\frac{1}{T}\int_{0}^{T}u(x,t)\eta_1(t)dt=\Phi_1(x), \;\;\;x\in \Omega\subset \Bbb R^n\] where $u$ is the unknown solution of the first boundary value problem for such equation, $\eta_1$ and $\Phi_1$ are the given functions. We use the method of the Green's function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信