基于深度学习的太赫兹分环谐振腔超表面逆设计

Jun Zhou, Jiajia Qian, Zhenzhen Ge, Shuting Wu, Luyang Liu, Zhen Ding
{"title":"基于深度学习的太赫兹分环谐振腔超表面逆设计","authors":"Jun Zhou, Jiajia Qian, Zhenzhen Ge, Shuting Wu, Luyang Liu, Zhen Ding","doi":"10.1109/ucmmt53364.2021.9569905","DOIUrl":null,"url":null,"abstract":"Designing a metasurface structure on demand is an extremely time-consuming process. As an efficient machine learning method, deep learning has been widely used for data classification and regression in recent years and in fact shown good generalization performance. We have built a deep neural network for ondemand design of a terahertz (THz) metasuface with split ring resonator. With the required reflectance as input, the parameters of the structure are automatically calculated and then output to achieve the purpose of designing on demand. The results indicate that using deep learning to train the data, the trained model can more accurately guide the design of the structure, thereby speeding up the design process. Compared with the traditional design process, using deep learning to guide the design of metasurface can achieve faster, more accurate, and more convenient purposes.","PeriodicalId":117712,"journal":{"name":"2021 14th UK-Europe-China Workshop on Millimetre-Waves and Terahertz Technologies (UCMMT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse Design of a Terahertz Metasurface with Split Ring Resonator Based on Deep Learning\",\"authors\":\"Jun Zhou, Jiajia Qian, Zhenzhen Ge, Shuting Wu, Luyang Liu, Zhen Ding\",\"doi\":\"10.1109/ucmmt53364.2021.9569905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing a metasurface structure on demand is an extremely time-consuming process. As an efficient machine learning method, deep learning has been widely used for data classification and regression in recent years and in fact shown good generalization performance. We have built a deep neural network for ondemand design of a terahertz (THz) metasuface with split ring resonator. With the required reflectance as input, the parameters of the structure are automatically calculated and then output to achieve the purpose of designing on demand. The results indicate that using deep learning to train the data, the trained model can more accurately guide the design of the structure, thereby speeding up the design process. Compared with the traditional design process, using deep learning to guide the design of metasurface can achieve faster, more accurate, and more convenient purposes.\",\"PeriodicalId\":117712,\"journal\":{\"name\":\"2021 14th UK-Europe-China Workshop on Millimetre-Waves and Terahertz Technologies (UCMMT)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 14th UK-Europe-China Workshop on Millimetre-Waves and Terahertz Technologies (UCMMT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ucmmt53364.2021.9569905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 14th UK-Europe-China Workshop on Millimetre-Waves and Terahertz Technologies (UCMMT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ucmmt53364.2021.9569905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

按需设计元表面结构是一个非常耗时的过程。深度学习作为一种高效的机器学习方法,近年来在数据分类和回归方面得到了广泛的应用,并显示出良好的泛化性能。我们建立了一个深度神经网络,用于太赫兹(THz)分环谐振器元表面的按需设计。以所需反射率为输入,自动计算出结构参数并输出,达到按需设计的目的。结果表明,利用深度学习对数据进行训练,训练后的模型可以更准确地指导结构的设计,从而加快设计过程。与传统的设计过程相比,利用深度学习来指导超表面的设计可以达到更快、更准确、更方便的目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse Design of a Terahertz Metasurface with Split Ring Resonator Based on Deep Learning
Designing a metasurface structure on demand is an extremely time-consuming process. As an efficient machine learning method, deep learning has been widely used for data classification and regression in recent years and in fact shown good generalization performance. We have built a deep neural network for ondemand design of a terahertz (THz) metasuface with split ring resonator. With the required reflectance as input, the parameters of the structure are automatically calculated and then output to achieve the purpose of designing on demand. The results indicate that using deep learning to train the data, the trained model can more accurately guide the design of the structure, thereby speeding up the design process. Compared with the traditional design process, using deep learning to guide the design of metasurface can achieve faster, more accurate, and more convenient purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信