{"title":"用于智能手机应用的毫米波第五代(5G)天线","authors":"Fatin Iswani Azmi, F. Zubir, N. M. Nadzir","doi":"10.11113/elektrika.v18n2.163","DOIUrl":null,"url":null,"abstract":"In this paper, a single element antenna is designed at millimeter-wave frequency bands for future 5G smartphone applications. The configuration of proposed antenna is multiple L-slots on the ground plane which is designed on a low cost FR4 board. The antenna covers a frequency range between 28 to 35 GHz with a higher bandwidth 4.7 GHz. The antenna shows an excellent performance when integrated with the mobile phone application. The single element antenna exhibits a maximum radiation pattern around 5.945 dBi.","PeriodicalId":312612,"journal":{"name":"ELEKTRIKA- Journal of Electrical Engineering","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Millimeter Wave Fifth Generation (5G) Antenna for Smartphone Application\",\"authors\":\"Fatin Iswani Azmi, F. Zubir, N. M. Nadzir\",\"doi\":\"10.11113/elektrika.v18n2.163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a single element antenna is designed at millimeter-wave frequency bands for future 5G smartphone applications. The configuration of proposed antenna is multiple L-slots on the ground plane which is designed on a low cost FR4 board. The antenna covers a frequency range between 28 to 35 GHz with a higher bandwidth 4.7 GHz. The antenna shows an excellent performance when integrated with the mobile phone application. The single element antenna exhibits a maximum radiation pattern around 5.945 dBi.\",\"PeriodicalId\":312612,\"journal\":{\"name\":\"ELEKTRIKA- Journal of Electrical Engineering\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ELEKTRIKA- Journal of Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/elektrika.v18n2.163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELEKTRIKA- Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/elektrika.v18n2.163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Millimeter Wave Fifth Generation (5G) Antenna for Smartphone Application
In this paper, a single element antenna is designed at millimeter-wave frequency bands for future 5G smartphone applications. The configuration of proposed antenna is multiple L-slots on the ground plane which is designed on a low cost FR4 board. The antenna covers a frequency range between 28 to 35 GHz with a higher bandwidth 4.7 GHz. The antenna shows an excellent performance when integrated with the mobile phone application. The single element antenna exhibits a maximum radiation pattern around 5.945 dBi.