一种基于传感器数据和过程监控的化工数据处理方法

Haodong Chen, Qing He, Guan Guan, Xian Wu, T. Xu, Yanghong Zhang, Haibin Wang
{"title":"一种基于传感器数据和过程监控的化工数据处理方法","authors":"Haodong Chen, Qing He, Guan Guan, Xian Wu, T. Xu, Yanghong Zhang, Haibin Wang","doi":"10.1109/ICINFA.2016.7831922","DOIUrl":null,"url":null,"abstract":"In order to recognizing the feature of abnormality in advance and fix the possible dirty data simultaneously, this article proposed a method to construct a proper mode for a production process producing specific product, a method to estimate the stability of a linear process and a group of data cleaning rule. Both the data processing procedure and algorithm are given detailedly with some samples and mathematical derivation in this article.","PeriodicalId":389619,"journal":{"name":"2016 IEEE International Conference on Information and Automation (ICIA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A data processing method for chemical industry based on sensor data and process monitoring\",\"authors\":\"Haodong Chen, Qing He, Guan Guan, Xian Wu, T. Xu, Yanghong Zhang, Haibin Wang\",\"doi\":\"10.1109/ICINFA.2016.7831922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to recognizing the feature of abnormality in advance and fix the possible dirty data simultaneously, this article proposed a method to construct a proper mode for a production process producing specific product, a method to estimate the stability of a linear process and a group of data cleaning rule. Both the data processing procedure and algorithm are given detailedly with some samples and mathematical derivation in this article.\",\"PeriodicalId\":389619,\"journal\":{\"name\":\"2016 IEEE International Conference on Information and Automation (ICIA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Information and Automation (ICIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINFA.2016.7831922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Information and Automation (ICIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2016.7831922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了提前识别异常特征,同时修复可能存在的脏数据,本文提出了为生产特定产品的生产过程构建合适模型的方法、线性过程稳定性估计方法和一组数据清洗规则。文中详细地给出了数据的处理过程和算法,并给出了一些实例和数学推导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A data processing method for chemical industry based on sensor data and process monitoring
In order to recognizing the feature of abnormality in advance and fix the possible dirty data simultaneously, this article proposed a method to construct a proper mode for a production process producing specific product, a method to estimate the stability of a linear process and a group of data cleaning rule. Both the data processing procedure and algorithm are given detailedly with some samples and mathematical derivation in this article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信