在大范围内生成可信的故事

Bilal Kartal, John Koenig, S. Guy
{"title":"在大范围内生成可信的故事","authors":"Bilal Kartal, John Koenig, S. Guy","doi":"10.1609/aiide.v9i4.12622","DOIUrl":null,"url":null,"abstract":"\n \n Planning-based techniques are a very powerful tool for automated story generation. However, as the number of possible actions increases, traditional planning techniques suffer from a combinatorial explosion due to large branching factors. In this work, we apply Monte Carlo Tree Search (MCTS) techniques to generate stories in domains with large numbers of possible actions (100+). Our approach employs a Bayesian story evaluation method to guide the planning towards believable stories that reach a user defined goal. We generate stories in a novel domain with different type of story goals. Our approach shows an order of magnitude improvement in performance over traditional search techniques.\n \n","PeriodicalId":249108,"journal":{"name":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Generating Believable Stories in Large Domains\",\"authors\":\"Bilal Kartal, John Koenig, S. Guy\",\"doi\":\"10.1609/aiide.v9i4.12622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Planning-based techniques are a very powerful tool for automated story generation. However, as the number of possible actions increases, traditional planning techniques suffer from a combinatorial explosion due to large branching factors. In this work, we apply Monte Carlo Tree Search (MCTS) techniques to generate stories in domains with large numbers of possible actions (100+). Our approach employs a Bayesian story evaluation method to guide the planning towards believable stories that reach a user defined goal. We generate stories in a novel domain with different type of story goals. Our approach shows an order of magnitude improvement in performance over traditional search techniques.\\n \\n\",\"PeriodicalId\":249108,\"journal\":{\"name\":\"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment\",\"volume\":\"149 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aiide.v9i4.12622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aiide.v9i4.12622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

基于计划的技术是一种非常强大的自动化故事生成工具。然而,随着可能的行动数量的增加,传统的规划技术由于大的分支因素而遭受组合爆炸。在这项工作中,我们应用蒙特卡罗树搜索(MCTS)技术在具有大量可能动作(100+)的领域中生成故事。我们的方法采用贝叶斯故事评估方法来指导计划朝着可信的故事,达到用户定义的目标。我们在一个具有不同类型故事目标的新领域中生成故事。我们的方法在性能上比传统的搜索技术有了数量级的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating Believable Stories in Large Domains
Planning-based techniques are a very powerful tool for automated story generation. However, as the number of possible actions increases, traditional planning techniques suffer from a combinatorial explosion due to large branching factors. In this work, we apply Monte Carlo Tree Search (MCTS) techniques to generate stories in domains with large numbers of possible actions (100+). Our approach employs a Bayesian story evaluation method to guide the planning towards believable stories that reach a user defined goal. We generate stories in a novel domain with different type of story goals. Our approach shows an order of magnitude improvement in performance over traditional search techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信