{"title":"在大范围内生成可信的故事","authors":"Bilal Kartal, John Koenig, S. Guy","doi":"10.1609/aiide.v9i4.12622","DOIUrl":null,"url":null,"abstract":"\n \n Planning-based techniques are a very powerful tool for automated story generation. However, as the number of possible actions increases, traditional planning techniques suffer from a combinatorial explosion due to large branching factors. In this work, we apply Monte Carlo Tree Search (MCTS) techniques to generate stories in domains with large numbers of possible actions (100+). Our approach employs a Bayesian story evaluation method to guide the planning towards believable stories that reach a user defined goal. We generate stories in a novel domain with different type of story goals. Our approach shows an order of magnitude improvement in performance over traditional search techniques.\n \n","PeriodicalId":249108,"journal":{"name":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Generating Believable Stories in Large Domains\",\"authors\":\"Bilal Kartal, John Koenig, S. Guy\",\"doi\":\"10.1609/aiide.v9i4.12622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Planning-based techniques are a very powerful tool for automated story generation. However, as the number of possible actions increases, traditional planning techniques suffer from a combinatorial explosion due to large branching factors. In this work, we apply Monte Carlo Tree Search (MCTS) techniques to generate stories in domains with large numbers of possible actions (100+). Our approach employs a Bayesian story evaluation method to guide the planning towards believable stories that reach a user defined goal. We generate stories in a novel domain with different type of story goals. Our approach shows an order of magnitude improvement in performance over traditional search techniques.\\n \\n\",\"PeriodicalId\":249108,\"journal\":{\"name\":\"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment\",\"volume\":\"149 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aiide.v9i4.12622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aiide.v9i4.12622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Planning-based techniques are a very powerful tool for automated story generation. However, as the number of possible actions increases, traditional planning techniques suffer from a combinatorial explosion due to large branching factors. In this work, we apply Monte Carlo Tree Search (MCTS) techniques to generate stories in domains with large numbers of possible actions (100+). Our approach employs a Bayesian story evaluation method to guide the planning towards believable stories that reach a user defined goal. We generate stories in a novel domain with different type of story goals. Our approach shows an order of magnitude improvement in performance over traditional search techniques.