{"title":"一种用于量词消去的符号-数值圆柱代数分解的有效实现","authors":"Hidenao Iwane, H. Yanami, H. Anai, K. Yokoyama","doi":"10.1145/1577190.1577203","DOIUrl":null,"url":null,"abstract":"Recently quantifier elimination (QE) has been of great interest in many fields of science and engineering. In this paper an effective symbolic-numeric cylindrical algebraic decomposition (SNCAD) algorithm and its variant specially designed for QE are proposed based on the authors' previous work and our implementation of those is reported. Based on analysing experimental performances, we are improving our design/synthesis of the SNCAD for its practical realization with existing efficient computational techniques and several newly introduced ones. The practicality of the SNCAD is now examined by a number of experimental results including practical engineering problems, which also reveals the quality of the implementation.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"An effective implementation of a symbolic-numeric cylindrical algebraic decomposition for quantifier elimination\",\"authors\":\"Hidenao Iwane, H. Yanami, H. Anai, K. Yokoyama\",\"doi\":\"10.1145/1577190.1577203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently quantifier elimination (QE) has been of great interest in many fields of science and engineering. In this paper an effective symbolic-numeric cylindrical algebraic decomposition (SNCAD) algorithm and its variant specially designed for QE are proposed based on the authors' previous work and our implementation of those is reported. Based on analysing experimental performances, we are improving our design/synthesis of the SNCAD for its practical realization with existing efficient computational techniques and several newly introduced ones. The practicality of the SNCAD is now examined by a number of experimental results including practical engineering problems, which also reveals the quality of the implementation.\",\"PeriodicalId\":308716,\"journal\":{\"name\":\"Symbolic-Numeric Computation\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbolic-Numeric Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1577190.1577203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1577190.1577203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An effective implementation of a symbolic-numeric cylindrical algebraic decomposition for quantifier elimination
Recently quantifier elimination (QE) has been of great interest in many fields of science and engineering. In this paper an effective symbolic-numeric cylindrical algebraic decomposition (SNCAD) algorithm and its variant specially designed for QE are proposed based on the authors' previous work and our implementation of those is reported. Based on analysing experimental performances, we are improving our design/synthesis of the SNCAD for its practical realization with existing efficient computational techniques and several newly introduced ones. The practicality of the SNCAD is now examined by a number of experimental results including practical engineering problems, which also reveals the quality of the implementation.