基于推荐的大学社区网络使用挖掘模型

Miguel Darío Dussán-Sarria, Elizabeth León-Guzmán
{"title":"基于推荐的大学社区网络使用挖掘模型","authors":"Miguel Darío Dussán-Sarria, Elizabeth León-Guzmán","doi":"10.1109/LA-WEB.2012.23","DOIUrl":null,"url":null,"abstract":"In this paper a recommendation model based on web usage mining applied to the navigation data from a community college is proposed. The model is composed by an offline and an online module. In the offline module, the web sessions are preprocessed and represented in a vector space model using the frequency of the URLs, and after are grouped based on similarity measure using the Bisecting K-Means clustering algorithm. In the online module, each cluster found is represented by association rules, and the clusters are used for recommending web pages to the users. The article presents the procedures of selection and removal of entries in the web log, preprocessing of web sessions, and the strategies used for the web page recommendation. Supervised validation was applied to the model, selecting a group of web sessions as queries to the system, and asking users to answer a survey on the output.","PeriodicalId":333389,"journal":{"name":"2012 Eighth Latin American Web Congress","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Recommendation-Based Web Usage Mining Model for a University Community\",\"authors\":\"Miguel Darío Dussán-Sarria, Elizabeth León-Guzmán\",\"doi\":\"10.1109/LA-WEB.2012.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a recommendation model based on web usage mining applied to the navigation data from a community college is proposed. The model is composed by an offline and an online module. In the offline module, the web sessions are preprocessed and represented in a vector space model using the frequency of the URLs, and after are grouped based on similarity measure using the Bisecting K-Means clustering algorithm. In the online module, each cluster found is represented by association rules, and the clusters are used for recommending web pages to the users. The article presents the procedures of selection and removal of entries in the web log, preprocessing of web sessions, and the strategies used for the web page recommendation. Supervised validation was applied to the model, selecting a group of web sessions as queries to the system, and asking users to answer a survey on the output.\",\"PeriodicalId\":333389,\"journal\":{\"name\":\"2012 Eighth Latin American Web Congress\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Eighth Latin American Web Congress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LA-WEB.2012.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Eighth Latin American Web Congress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LA-WEB.2012.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于web使用挖掘的推荐模型,并将其应用于某社区高校的导航数据中。该模型由离线模块和在线模块组成。在离线模块中,对web会话进行预处理,并使用url的频率在向量空间模型中表示,然后使用平分k均值聚类算法基于相似性度量进行分组。在在线模块中,找到的每个聚类都用关联规则表示,并使用这些聚类向用户推荐网页。本文介绍了web日志中条目的选择和删除过程、web会话的预处理以及用于网页推荐的策略。监督验证应用于模型,选择一组web会话作为对系统的查询,并要求用户回答关于输出的调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Recommendation-Based Web Usage Mining Model for a University Community
In this paper a recommendation model based on web usage mining applied to the navigation data from a community college is proposed. The model is composed by an offline and an online module. In the offline module, the web sessions are preprocessed and represented in a vector space model using the frequency of the URLs, and after are grouped based on similarity measure using the Bisecting K-Means clustering algorithm. In the online module, each cluster found is represented by association rules, and the clusters are used for recommending web pages to the users. The article presents the procedures of selection and removal of entries in the web log, preprocessing of web sessions, and the strategies used for the web page recommendation. Supervised validation was applied to the model, selecting a group of web sessions as queries to the system, and asking users to answer a survey on the output.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信