{"title":"相控阵传感器信号识别的进化自适应发现","authors":"T. McJunkin, M. Manic","doi":"10.1109/HSI.2011.5937371","DOIUrl":null,"url":null,"abstract":"Tomography, used to create images of the internal properties and features of an object, from phased array ultasonics is improved through many sophisiticated methonds of post processing of data. One approach used to improve tomographic results is to prescribe the collection of more data, from different points of few so that data fusion might have a richer data set to work from. This approach can lead to rapid increase in the data needed to be stored and processed. It also does not necessarily lead to have the needed data. This article describes a novel approach to utilizing the data aquired as a basis for adapting the sensors focusing parameters to locate more precisely the features in the material: specifically, two evolutionary methods of autofocusing on a returned signal are coupled with the derivations of the forumulas for spatially locating the feature are given. Test results of the two novel methods of evolutionary based focusing (EBF) illustrate the improved signal strength and correction of the position of feature using the optimized focal timing parameters, called Focused Delay Identification (FoDI).","PeriodicalId":384027,"journal":{"name":"2011 4th International Conference on Human System Interactions, HSI 2011","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evolutionary adaptive discovery of phased array sensor signal identification\",\"authors\":\"T. McJunkin, M. Manic\",\"doi\":\"10.1109/HSI.2011.5937371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tomography, used to create images of the internal properties and features of an object, from phased array ultasonics is improved through many sophisiticated methonds of post processing of data. One approach used to improve tomographic results is to prescribe the collection of more data, from different points of few so that data fusion might have a richer data set to work from. This approach can lead to rapid increase in the data needed to be stored and processed. It also does not necessarily lead to have the needed data. This article describes a novel approach to utilizing the data aquired as a basis for adapting the sensors focusing parameters to locate more precisely the features in the material: specifically, two evolutionary methods of autofocusing on a returned signal are coupled with the derivations of the forumulas for spatially locating the feature are given. Test results of the two novel methods of evolutionary based focusing (EBF) illustrate the improved signal strength and correction of the position of feature using the optimized focal timing parameters, called Focused Delay Identification (FoDI).\",\"PeriodicalId\":384027,\"journal\":{\"name\":\"2011 4th International Conference on Human System Interactions, HSI 2011\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 4th International Conference on Human System Interactions, HSI 2011\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HSI.2011.5937371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 4th International Conference on Human System Interactions, HSI 2011","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HSI.2011.5937371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evolutionary adaptive discovery of phased array sensor signal identification
Tomography, used to create images of the internal properties and features of an object, from phased array ultasonics is improved through many sophisiticated methonds of post processing of data. One approach used to improve tomographic results is to prescribe the collection of more data, from different points of few so that data fusion might have a richer data set to work from. This approach can lead to rapid increase in the data needed to be stored and processed. It also does not necessarily lead to have the needed data. This article describes a novel approach to utilizing the data aquired as a basis for adapting the sensors focusing parameters to locate more precisely the features in the material: specifically, two evolutionary methods of autofocusing on a returned signal are coupled with the derivations of the forumulas for spatially locating the feature are given. Test results of the two novel methods of evolutionary based focusing (EBF) illustrate the improved signal strength and correction of the position of feature using the optimized focal timing parameters, called Focused Delay Identification (FoDI).