基于稀疏性的SAR图像压缩

A. Budillon, Gilda Schirinzi
{"title":"基于稀疏性的SAR图像压缩","authors":"A. Budillon, Gilda Schirinzi","doi":"10.1109/IGARSS.2015.7326494","DOIUrl":null,"url":null,"abstract":"In this paper we investigate SAR image compression based on sparse representation. Two approaches are considered: the first one is based on the use of an Overcomplete ICA transform coding method, the second one is based on Compressive Sensing (CS). In both cases an Overcomplete ICA representation is used as sparse representation, but while in the first case the significant overcomplete ICA coefficients are coded using an optimal entropy constrained threshold quantizer, in the latter case a reduced number of measurements obtained combining the SAR image pixels through a random measurement matrix are directly coded. Numerical results on TerraSAR-X images are presented.","PeriodicalId":125717,"journal":{"name":"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAR image compression based on sparsity\",\"authors\":\"A. Budillon, Gilda Schirinzi\",\"doi\":\"10.1109/IGARSS.2015.7326494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate SAR image compression based on sparse representation. Two approaches are considered: the first one is based on the use of an Overcomplete ICA transform coding method, the second one is based on Compressive Sensing (CS). In both cases an Overcomplete ICA representation is used as sparse representation, but while in the first case the significant overcomplete ICA coefficients are coded using an optimal entropy constrained threshold quantizer, in the latter case a reduced number of measurements obtained combining the SAR image pixels through a random measurement matrix are directly coded. Numerical results on TerraSAR-X images are presented.\",\"PeriodicalId\":125717,\"journal\":{\"name\":\"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2015.7326494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2015.7326494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了基于稀疏表示的SAR图像压缩算法。考虑了两种方法:第一种方法是基于使用过完备ICA变换编码方法,第二种方法是基于压缩感知(CS)。在这两种情况下,都使用过完备ICA表示作为稀疏表示,但是在第一种情况下,使用最优熵约束阈值量化器对重要的过完备ICA系数进行编码,在后一种情况下,通过随机测量矩阵结合SAR图像像素获得的减少的测量次数直接编码。给出了在TerraSAR-X图像上的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SAR image compression based on sparsity
In this paper we investigate SAR image compression based on sparse representation. Two approaches are considered: the first one is based on the use of an Overcomplete ICA transform coding method, the second one is based on Compressive Sensing (CS). In both cases an Overcomplete ICA representation is used as sparse representation, but while in the first case the significant overcomplete ICA coefficients are coded using an optimal entropy constrained threshold quantizer, in the latter case a reduced number of measurements obtained combining the SAR image pixels through a random measurement matrix are directly coded. Numerical results on TerraSAR-X images are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信