多用户人机交互框架下的视听说话人划分

Timothée Dhaussy, B. Jabaian, F. Lefèvre, R. Horaud
{"title":"多用户人机交互框架下的视听说话人划分","authors":"Timothée Dhaussy, B. Jabaian, F. Lefèvre, R. Horaud","doi":"10.1109/ICASSP49357.2023.10096295","DOIUrl":null,"url":null,"abstract":"The speaker diarization task answers the question \"who is speaking at a given time?\". It represents valuable information for scene analysis in a domain such as robotics. In this paper, we introduce a temporal audio-visual fusion model for multiusers speaker diarization, with low computing requirement, a good robustness and an absence of training phase. The proposed method identifies the dominant speakers and tracks them over time by measuring the spatial coincidence between sound locations and visual presence. The model is generative, parameters are estimated online, and does not require training. Its effectiveness was assessed using two datasets, a public one and one collected in-house with the Pepper humanoid robot.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Audio-Visual Speaker Diarization in the Framework of Multi-User Human-Robot Interaction\",\"authors\":\"Timothée Dhaussy, B. Jabaian, F. Lefèvre, R. Horaud\",\"doi\":\"10.1109/ICASSP49357.2023.10096295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The speaker diarization task answers the question \\\"who is speaking at a given time?\\\". It represents valuable information for scene analysis in a domain such as robotics. In this paper, we introduce a temporal audio-visual fusion model for multiusers speaker diarization, with low computing requirement, a good robustness and an absence of training phase. The proposed method identifies the dominant speakers and tracks them over time by measuring the spatial coincidence between sound locations and visual presence. The model is generative, parameters are estimated online, and does not require training. Its effectiveness was assessed using two datasets, a public one and one collected in-house with the Pepper humanoid robot.\",\"PeriodicalId\":113072,\"journal\":{\"name\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP49357.2023.10096295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10096295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

说话人分类任务回答“在给定的时间谁在说话?”它为机器人等领域的场景分析提供了有价值的信息。本文提出了一种计算量低、鲁棒性好、不需要训练阶段的多用户说话人时间视听融合模型。该方法通过测量声音位置和视觉存在之间的空间一致性来识别占主导地位的说话者,并随着时间的推移跟踪他们。该模型是生成的,参数是在线估计的,不需要训练。它的有效性是通过两个数据集来评估的,一个是公共数据集,另一个是由人形机器人Pepper收集的内部数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Audio-Visual Speaker Diarization in the Framework of Multi-User Human-Robot Interaction
The speaker diarization task answers the question "who is speaking at a given time?". It represents valuable information for scene analysis in a domain such as robotics. In this paper, we introduce a temporal audio-visual fusion model for multiusers speaker diarization, with low computing requirement, a good robustness and an absence of training phase. The proposed method identifies the dominant speakers and tracks them over time by measuring the spatial coincidence between sound locations and visual presence. The model is generative, parameters are estimated online, and does not require training. Its effectiveness was assessed using two datasets, a public one and one collected in-house with the Pepper humanoid robot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信