复变量的预函数与扩展预函数

Thirumalai A, Muthunagai K, R. Agarwal
{"title":"复变量的预函数与扩展预函数","authors":"Thirumalai A, Muthunagai K, R. Agarwal","doi":"10.46481/jnsps.2023.1427","DOIUrl":null,"url":null,"abstract":"Pre-functions are functions that possess a sequence $\\{f_{n}(z,\\beta)\\}$ which tends to one of the elementary functions as $n$ tends to infinity and $\\beta$ tends to 0. The main objective of this paper is to broaden the scope of pre-functions from functions of a real variable to functions of a complex variable by introducing pre-functions of a complex variable. We have analyzed the pre-functions of a complex variable for their properties. The pre-Laguerre, pre-Bessel and pre-Legendre polynomials of a complex variable have been obtained as special cases. Graphs have been used to visualize complex pre-functions.","PeriodicalId":342917,"journal":{"name":"Journal of the Nigerian Society of Physical Sciences","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pre-functions and Extended pre-functions of Complex Variables\",\"authors\":\"Thirumalai A, Muthunagai K, R. Agarwal\",\"doi\":\"10.46481/jnsps.2023.1427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pre-functions are functions that possess a sequence $\\\\{f_{n}(z,\\\\beta)\\\\}$ which tends to one of the elementary functions as $n$ tends to infinity and $\\\\beta$ tends to 0. The main objective of this paper is to broaden the scope of pre-functions from functions of a real variable to functions of a complex variable by introducing pre-functions of a complex variable. We have analyzed the pre-functions of a complex variable for their properties. The pre-Laguerre, pre-Bessel and pre-Legendre polynomials of a complex variable have been obtained as special cases. Graphs have been used to visualize complex pre-functions.\",\"PeriodicalId\":342917,\"journal\":{\"name\":\"Journal of the Nigerian Society of Physical Sciences\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Nigerian Society of Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46481/jnsps.2023.1427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Nigerian Society of Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46481/jnsps.2023.1427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

预函数是具有序列$\{f_{n}(z,\beta)\}$的函数,该序列趋于一个初等函数,如$n$趋于无穷,$\beta$趋于0。本文的主要目的是通过引入复变量的预函数,将预函数的范围从实变量的函数扩大到复变量的函数。我们分析了一个复变量的前函数的性质。作为特殊情况,得到了复变量的pre-Laguerre、pre-Bessel和pre-Legendre多项式。图形已用于可视化复杂的预函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pre-functions and Extended pre-functions of Complex Variables
Pre-functions are functions that possess a sequence $\{f_{n}(z,\beta)\}$ which tends to one of the elementary functions as $n$ tends to infinity and $\beta$ tends to 0. The main objective of this paper is to broaden the scope of pre-functions from functions of a real variable to functions of a complex variable by introducing pre-functions of a complex variable. We have analyzed the pre-functions of a complex variable for their properties. The pre-Laguerre, pre-Bessel and pre-Legendre polynomials of a complex variable have been obtained as special cases. Graphs have been used to visualize complex pre-functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信