{"title":"基于分布式二次协同控制的低压孤岛微电网有功功率精确共享","authors":"Morteza Mansouri Takantape, M. Hamzeh","doi":"10.1109/SGC.2017.8308843","DOIUrl":null,"url":null,"abstract":"This paper presents an accurate active power-sharing in low-voltage (LV) islanded microgrids by synthesizing voltage-real power droop and frequency-reactive power boost (PVD/QFB) method and distributed secondary cooperative control. In contrast to conventional droop method, which may lead to poor stability in LV microgrids, PVD/QFB method brings the stable condition to islanded LV microgrids. The utilized distributed secondary cooperative control removes the substantial active power-sharing error of PVD/QFB method. Therefore, the capability of PVD/QFB method in LV microgrids is improved and, moreover, it becomes practical for both parallel inverters and networked microgrids. The microgrid voltage restoration is also provided by aforementioned secondary control. Finally, a simulation is conducted in PLECS software to verify the presented method.","PeriodicalId":346749,"journal":{"name":"2017 Smart Grid Conference (SGC)","volume":"637 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Accurate active power-sharing in low-voltage islanded microgrids using a distributed secondary cooperative control\",\"authors\":\"Morteza Mansouri Takantape, M. Hamzeh\",\"doi\":\"10.1109/SGC.2017.8308843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an accurate active power-sharing in low-voltage (LV) islanded microgrids by synthesizing voltage-real power droop and frequency-reactive power boost (PVD/QFB) method and distributed secondary cooperative control. In contrast to conventional droop method, which may lead to poor stability in LV microgrids, PVD/QFB method brings the stable condition to islanded LV microgrids. The utilized distributed secondary cooperative control removes the substantial active power-sharing error of PVD/QFB method. Therefore, the capability of PVD/QFB method in LV microgrids is improved and, moreover, it becomes practical for both parallel inverters and networked microgrids. The microgrid voltage restoration is also provided by aforementioned secondary control. Finally, a simulation is conducted in PLECS software to verify the presented method.\",\"PeriodicalId\":346749,\"journal\":{\"name\":\"2017 Smart Grid Conference (SGC)\",\"volume\":\"637 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Smart Grid Conference (SGC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SGC.2017.8308843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Smart Grid Conference (SGC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SGC.2017.8308843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accurate active power-sharing in low-voltage islanded microgrids using a distributed secondary cooperative control
This paper presents an accurate active power-sharing in low-voltage (LV) islanded microgrids by synthesizing voltage-real power droop and frequency-reactive power boost (PVD/QFB) method and distributed secondary cooperative control. In contrast to conventional droop method, which may lead to poor stability in LV microgrids, PVD/QFB method brings the stable condition to islanded LV microgrids. The utilized distributed secondary cooperative control removes the substantial active power-sharing error of PVD/QFB method. Therefore, the capability of PVD/QFB method in LV microgrids is improved and, moreover, it becomes practical for both parallel inverters and networked microgrids. The microgrid voltage restoration is also provided by aforementioned secondary control. Finally, a simulation is conducted in PLECS software to verify the presented method.