P3RPQ:基于pregel的大型RDF图的并行来源感知规则路径查询处理

Yueqi Xin, Bingyi Zhang, Xin Wang, Qiang Xu, Zhiyong Feng
{"title":"P3RPQ:基于pregel的大型RDF图的并行来源感知规则路径查询处理","authors":"Yueqi Xin, Bingyi Zhang, Xin Wang, Qiang Xu, Zhiyong Feng","doi":"10.1145/3184558.3186908","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel method for answering Pregel-based Parallel Provenance-aware Regular Path Queries (P3RPQ) on large RDF graphs. Our method is developed using the Pregel framework, which utilizes Glushkov automata to keep track of the matching process of RPQs in parallel. Meanwhile, four optimization strategies are devised, which can reduce the response time of the basic algorithm dramatically and overcome the counting paths problem to some extent. The experiments are conducted to verify the performance of our algorithms on both synthetic and real-world datasets.","PeriodicalId":235572,"journal":{"name":"Companion Proceedings of the The Web Conference 2018","volume":"282 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"P3RPQ: Pregel-Based Parallel Provenance-Aware Regular Path Query Processing on Large RDF Graphs\",\"authors\":\"Yueqi Xin, Bingyi Zhang, Xin Wang, Qiang Xu, Zhiyong Feng\",\"doi\":\"10.1145/3184558.3186908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel method for answering Pregel-based Parallel Provenance-aware Regular Path Queries (P3RPQ) on large RDF graphs. Our method is developed using the Pregel framework, which utilizes Glushkov automata to keep track of the matching process of RPQs in parallel. Meanwhile, four optimization strategies are devised, which can reduce the response time of the basic algorithm dramatically and overcome the counting paths problem to some extent. The experiments are conducted to verify the performance of our algorithms on both synthetic and real-world datasets.\",\"PeriodicalId\":235572,\"journal\":{\"name\":\"Companion Proceedings of the The Web Conference 2018\",\"volume\":\"282 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion Proceedings of the The Web Conference 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3184558.3186908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the The Web Conference 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3184558.3186908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种在大型RDF图上回答基于pregel的并行溯源感知规则路径查询(P3RPQ)的新方法。我们的方法是使用Pregel框架开发的,该框架利用Glushkov自动机并行跟踪rpq的匹配过程。同时,设计了四种优化策略,大大缩短了基本算法的响应时间,并在一定程度上克服了计数路径问题。实验验证了我们的算法在合成数据集和真实数据集上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
P3RPQ: Pregel-Based Parallel Provenance-Aware Regular Path Query Processing on Large RDF Graphs
This paper proposes a novel method for answering Pregel-based Parallel Provenance-aware Regular Path Queries (P3RPQ) on large RDF graphs. Our method is developed using the Pregel framework, which utilizes Glushkov automata to keep track of the matching process of RPQs in parallel. Meanwhile, four optimization strategies are devised, which can reduce the response time of the basic algorithm dramatically and overcome the counting paths problem to some extent. The experiments are conducted to verify the performance of our algorithms on both synthetic and real-world datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信