车辆侧滑角估计的计算机视觉方法

Leonardo Serena, B. Lenzo, M. Bruschetta, R. Castro
{"title":"车辆侧滑角估计的计算机视觉方法","authors":"Leonardo Serena, B. Lenzo, M. Bruschetta, R. Castro","doi":"10.1109/MetroAutomotive57488.2023.10219124","DOIUrl":null,"url":null,"abstract":"Vehicle sideslip angle, defined as the angle between the longitudinal axis of a vehicle and its velocity vector, is a crucial parameter in vehicle dynamics. Unfortunately vehicle sideslip angle is very hard to access directly, therefore a variety of estimation methods have been developed so far. Such estimation methods are essentially based on model-based approaches or neural networks. This paper looks at the problem from a fresh angle, by investigating possible solutions to measure vehicle sideslip angle via computer vision techniques, harnessing recent improvements in computer vision algorithms. Preliminary experiments on a radio-controlled scaled vehicle show promising results using the \"phase correlation\" algorithm.","PeriodicalId":115847,"journal":{"name":"2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computer vision approaches for vehicle sideslip angle estimation\",\"authors\":\"Leonardo Serena, B. Lenzo, M. Bruschetta, R. Castro\",\"doi\":\"10.1109/MetroAutomotive57488.2023.10219124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicle sideslip angle, defined as the angle between the longitudinal axis of a vehicle and its velocity vector, is a crucial parameter in vehicle dynamics. Unfortunately vehicle sideslip angle is very hard to access directly, therefore a variety of estimation methods have been developed so far. Such estimation methods are essentially based on model-based approaches or neural networks. This paper looks at the problem from a fresh angle, by investigating possible solutions to measure vehicle sideslip angle via computer vision techniques, harnessing recent improvements in computer vision algorithms. Preliminary experiments on a radio-controlled scaled vehicle show promising results using the \\\"phase correlation\\\" algorithm.\",\"PeriodicalId\":115847,\"journal\":{\"name\":\"2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MetroAutomotive57488.2023.10219124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroAutomotive57488.2023.10219124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

车辆侧滑角是车辆动力学中的一个重要参数,其定义为车辆纵轴与其速度矢量之间的夹角。由于车辆侧滑角很难直接得到,因此目前已经发展出了各种各样的侧滑角估计方法。这种估计方法本质上是基于基于模型的方法或神经网络。本文从一个全新的角度看待这个问题,利用计算机视觉算法的最新改进,研究了通过计算机视觉技术测量车辆侧滑角的可能解决方案。初步实验表明,采用“相位相关”算法的无线电控制比例飞行器取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computer vision approaches for vehicle sideslip angle estimation
Vehicle sideslip angle, defined as the angle between the longitudinal axis of a vehicle and its velocity vector, is a crucial parameter in vehicle dynamics. Unfortunately vehicle sideslip angle is very hard to access directly, therefore a variety of estimation methods have been developed so far. Such estimation methods are essentially based on model-based approaches or neural networks. This paper looks at the problem from a fresh angle, by investigating possible solutions to measure vehicle sideslip angle via computer vision techniques, harnessing recent improvements in computer vision algorithms. Preliminary experiments on a radio-controlled scaled vehicle show promising results using the "phase correlation" algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信