熵图像对齐的随机优化方法

Waleed Mohamed, Ying Zhang, A. Hamza, N. Bouguila
{"title":"熵图像对齐的随机优化方法","authors":"Waleed Mohamed, Ying Zhang, A. Hamza, N. Bouguila","doi":"10.1109/ISIT.2008.4595365","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce an image alignment method by maximizing a Tsallis entopy-based divergence using a modified simultaneous perturbation stochastic approximation algorithm. Due to its convexity property, this divergence measure attains its maximum value when the conditional intensity probabilities between the reference image and the transformed target image are degenerate distributions. Experimental results are provided to show the registration accuracy of the proposed approach in comparison with existing entropic image alignment techniques.","PeriodicalId":194674,"journal":{"name":"2008 IEEE International Symposium on Information Theory","volume":"267 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Stochastic optimization approach for entropic image alignment\",\"authors\":\"Waleed Mohamed, Ying Zhang, A. Hamza, N. Bouguila\",\"doi\":\"10.1109/ISIT.2008.4595365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce an image alignment method by maximizing a Tsallis entopy-based divergence using a modified simultaneous perturbation stochastic approximation algorithm. Due to its convexity property, this divergence measure attains its maximum value when the conditional intensity probabilities between the reference image and the transformed target image are degenerate distributions. Experimental results are provided to show the registration accuracy of the proposed approach in comparison with existing entropic image alignment techniques.\",\"PeriodicalId\":194674,\"journal\":{\"name\":\"2008 IEEE International Symposium on Information Theory\",\"volume\":\"267 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2008.4595365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2008.4595365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文介绍了一种利用改进的同步摄动随机逼近算法最大化基于Tsallis熵的散度的图像对齐方法。由于发散量的凸性,当参考图像和变换后的目标图像之间的条件强度概率为简并分布时,发散量达到最大值。实验结果表明,该方法与现有的熵图像对齐方法相比具有较好的配准精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic optimization approach for entropic image alignment
In this paper, we introduce an image alignment method by maximizing a Tsallis entopy-based divergence using a modified simultaneous perturbation stochastic approximation algorithm. Due to its convexity property, this divergence measure attains its maximum value when the conditional intensity probabilities between the reference image and the transformed target image are degenerate distributions. Experimental results are provided to show the registration accuracy of the proposed approach in comparison with existing entropic image alignment techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信