{"title":"击败GAN:一个更简单的模型在知识表示学习中表现更好","authors":"Heng Wang, Mingzhi Mao","doi":"10.1109/ICCIA.2018.00027","DOIUrl":null,"url":null,"abstract":"The goal of knowledge representation learning is to embed entities and relations into a low-dimensional, continuous vector space. How to push a model to its limit and obtain better results is of great significance in knowledge graph's applications. We propose a simple and elegant method, Trans-DLR, whose main idea is dynamic learning rate control during training. Our method achieves remarkable improvement, compared with recent GAN-based method. Moreover, we introduce a new negative sampling trick which corrupts not only entities, but also relations, in different probabilities. We also develop an efficient way, which fully utilizes multiprocessing and parallel computing, to speed up evaluation of the model in link prediction tasks. Experiments show that our method is effective.","PeriodicalId":297098,"journal":{"name":"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defeats GAN: A Simpler Model Outperforms in Knowledge Representation Learning\",\"authors\":\"Heng Wang, Mingzhi Mao\",\"doi\":\"10.1109/ICCIA.2018.00027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of knowledge representation learning is to embed entities and relations into a low-dimensional, continuous vector space. How to push a model to its limit and obtain better results is of great significance in knowledge graph's applications. We propose a simple and elegant method, Trans-DLR, whose main idea is dynamic learning rate control during training. Our method achieves remarkable improvement, compared with recent GAN-based method. Moreover, we introduce a new negative sampling trick which corrupts not only entities, but also relations, in different probabilities. We also develop an efficient way, which fully utilizes multiprocessing and parallel computing, to speed up evaluation of the model in link prediction tasks. Experiments show that our method is effective.\",\"PeriodicalId\":297098,\"journal\":{\"name\":\"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIA.2018.00027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIA.2018.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Defeats GAN: A Simpler Model Outperforms in Knowledge Representation Learning
The goal of knowledge representation learning is to embed entities and relations into a low-dimensional, continuous vector space. How to push a model to its limit and obtain better results is of great significance in knowledge graph's applications. We propose a simple and elegant method, Trans-DLR, whose main idea is dynamic learning rate control during training. Our method achieves remarkable improvement, compared with recent GAN-based method. Moreover, we introduce a new negative sampling trick which corrupts not only entities, but also relations, in different probabilities. We also develop an efficient way, which fully utilizes multiprocessing and parallel computing, to speed up evaluation of the model in link prediction tasks. Experiments show that our method is effective.