自编码器及其在智慧城市中的潜在应用综述

R. Hendricks, L. Altherr
{"title":"自编码器及其在智慧城市中的潜在应用综述","authors":"R. Hendricks, L. Altherr","doi":"10.1109/CSCI54926.2021.00354","DOIUrl":null,"url":null,"abstract":"The following work gives an overview of a special type of neural networks, autoencoders, that can be of great interest to researchers and practitioners in the field of smart city, due to their numerous application possibilities in this context. Given the fact that these networks can be trained in an unsupervised fashion, autoencoders are immediately applicable to practically collected data sets that often lack labels, not requiring the tedious process of data labeling. In addition to the classical autoencoder, we present two other types, and highlight their differences in architecture and in areas of application. In doing so, the benefits of the respective autoencoders and their possible application, especially in the context of smart cities, are presented.","PeriodicalId":206881,"journal":{"name":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Overview of Selected Autoencoders and Their Potential Application in Smart Cities\",\"authors\":\"R. Hendricks, L. Altherr\",\"doi\":\"10.1109/CSCI54926.2021.00354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The following work gives an overview of a special type of neural networks, autoencoders, that can be of great interest to researchers and practitioners in the field of smart city, due to their numerous application possibilities in this context. Given the fact that these networks can be trained in an unsupervised fashion, autoencoders are immediately applicable to practically collected data sets that often lack labels, not requiring the tedious process of data labeling. In addition to the classical autoencoder, we present two other types, and highlight their differences in architecture and in areas of application. In doing so, the benefits of the respective autoencoders and their possible application, especially in the context of smart cities, are presented.\",\"PeriodicalId\":206881,\"journal\":{\"name\":\"2021 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI54926.2021.00354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI54926.2021.00354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

下面的工作概述了一种特殊类型的神经网络,即自动编码器,由于其在此背景下的众多应用可能性,智能城市领域的研究人员和实践者可能对此非常感兴趣。考虑到这些网络可以以无监督的方式进行训练,自动编码器可以立即适用于通常缺乏标签的实际收集的数据集,而不需要繁琐的数据标记过程。除了经典的自编码器之外,我们还介绍了另外两种类型,并强调了它们在架构和应用领域的差异。在此过程中,介绍了各自自动编码器的好处及其可能的应用,特别是在智慧城市的背景下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Overview of Selected Autoencoders and Their Potential Application in Smart Cities
The following work gives an overview of a special type of neural networks, autoencoders, that can be of great interest to researchers and practitioners in the field of smart city, due to their numerous application possibilities in this context. Given the fact that these networks can be trained in an unsupervised fashion, autoencoders are immediately applicable to practically collected data sets that often lack labels, not requiring the tedious process of data labeling. In addition to the classical autoencoder, we present two other types, and highlight their differences in architecture and in areas of application. In doing so, the benefits of the respective autoencoders and their possible application, especially in the context of smart cities, are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信