量子算法和经典算法在监督机器学习训练中的性能

Mariana Godoy Vazquez Miano, Aleccheevina Silva de Oliveira
{"title":"量子算法和经典算法在监督机器学习训练中的性能","authors":"Mariana Godoy Vazquez Miano, Aleccheevina Silva de Oliveira","doi":"10.47283/244670492021090281","DOIUrl":null,"url":null,"abstract":"This article addresses the interdisciplinary theme of Quantum Computing with Machine Learning, two technologies potentially capable of making changes in how computing is performed, solving initially unsolvable problems. The focus of this research was Quantum Computing applications that result in computational performance gain in specific Machine Learning tasks. The objective is to analyze the feasibility of using quantum algorithms for Machine Learning. More specifically, to analyze which quantum algorithms can be applied to Machine Learning tasks, compared to classical algorithms, in the search for better performance. For the development of the research, a bibliographic review of quantum algorithms was carried out and, subsequently, the implementation and performance verification of the quantum algorithm QSVM and its corresponding classic version SVM, in supervised learning with the AD HOC and IRIS datasets.","PeriodicalId":231227,"journal":{"name":"REVISTA TECNOLÓGICA DA FATEC AMERICANA","volume":"281 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DESEMPENHO DE ALGORITMOS QUÂNTICOS E CLÁSSICOS EM TREINAMENTO DE MACHINE LEARNING SUPERVISIONADO\",\"authors\":\"Mariana Godoy Vazquez Miano, Aleccheevina Silva de Oliveira\",\"doi\":\"10.47283/244670492021090281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article addresses the interdisciplinary theme of Quantum Computing with Machine Learning, two technologies potentially capable of making changes in how computing is performed, solving initially unsolvable problems. The focus of this research was Quantum Computing applications that result in computational performance gain in specific Machine Learning tasks. The objective is to analyze the feasibility of using quantum algorithms for Machine Learning. More specifically, to analyze which quantum algorithms can be applied to Machine Learning tasks, compared to classical algorithms, in the search for better performance. For the development of the research, a bibliographic review of quantum algorithms was carried out and, subsequently, the implementation and performance verification of the quantum algorithm QSVM and its corresponding classic version SVM, in supervised learning with the AD HOC and IRIS datasets.\",\"PeriodicalId\":231227,\"journal\":{\"name\":\"REVISTA TECNOLÓGICA DA FATEC AMERICANA\",\"volume\":\"281 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"REVISTA TECNOLÓGICA DA FATEC AMERICANA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47283/244670492021090281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"REVISTA TECNOLÓGICA DA FATEC AMERICANA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47283/244670492021090281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了量子计算与机器学习的跨学科主题,这两种技术有可能改变计算的执行方式,解决最初无法解决的问题。本研究的重点是量子计算应用,它可以在特定的机器学习任务中提高计算性能。目的是分析使用量子算法进行机器学习的可行性。更具体地说,与经典算法相比,分析哪些量子算法可以应用于机器学习任务,以寻求更好的性能。为了研究的发展,对量子算法进行了文献综述,随后对量子算法QSVM及其对应的经典版本SVM在AD HOC和IRIS数据集的监督学习中的实现和性能进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DESEMPENHO DE ALGORITMOS QUÂNTICOS E CLÁSSICOS EM TREINAMENTO DE MACHINE LEARNING SUPERVISIONADO
This article addresses the interdisciplinary theme of Quantum Computing with Machine Learning, two technologies potentially capable of making changes in how computing is performed, solving initially unsolvable problems. The focus of this research was Quantum Computing applications that result in computational performance gain in specific Machine Learning tasks. The objective is to analyze the feasibility of using quantum algorithms for Machine Learning. More specifically, to analyze which quantum algorithms can be applied to Machine Learning tasks, compared to classical algorithms, in the search for better performance. For the development of the research, a bibliographic review of quantum algorithms was carried out and, subsequently, the implementation and performance verification of the quantum algorithm QSVM and its corresponding classic version SVM, in supervised learning with the AD HOC and IRIS datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信