基于神经网络的具有在线自学习能力的工业炉无模型自整定控制器

Mingwang Zhao
{"title":"基于神经网络的具有在线自学习能力的工业炉无模型自整定控制器","authors":"Mingwang Zhao","doi":"10.1109/CCA.1994.381409","DOIUrl":null,"url":null,"abstract":"A neural-net-based model-free self-tuning controller for systems with unknown models or some modeling complexity is proposed in this paper. To enhance the on-line self-learning and adaptive abilities, an attenuating excitation signal is introduced to excite all modes of the systems and to produce the error signal needed for self-learning process. To realize the self-organized learning and control, a function evaluating the control effect is introduced to decide whether the on-line operational data can be chosen as the learning samples to train the controller, and how to train. The experiment results for the temperature control problem of some resistance furnaces show the effectiveness of the method.<<ETX>>","PeriodicalId":173370,"journal":{"name":"1994 Proceedings of IEEE International Conference on Control and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neural-net-based model-free self-tuning controller with on-line self-learning ability for industrial furnace\",\"authors\":\"Mingwang Zhao\",\"doi\":\"10.1109/CCA.1994.381409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A neural-net-based model-free self-tuning controller for systems with unknown models or some modeling complexity is proposed in this paper. To enhance the on-line self-learning and adaptive abilities, an attenuating excitation signal is introduced to excite all modes of the systems and to produce the error signal needed for self-learning process. To realize the self-organized learning and control, a function evaluating the control effect is introduced to decide whether the on-line operational data can be chosen as the learning samples to train the controller, and how to train. The experiment results for the temperature control problem of some resistance furnaces show the effectiveness of the method.<<ETX>>\",\"PeriodicalId\":173370,\"journal\":{\"name\":\"1994 Proceedings of IEEE International Conference on Control and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1994 Proceedings of IEEE International Conference on Control and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.1994.381409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1994 Proceedings of IEEE International Conference on Control and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.1994.381409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对模型未知或建模复杂的系统,提出了一种基于神经网络的无模型自整定控制器。为了提高系统的在线自学习和自适应能力,引入了一个衰减激励信号来激励系统的所有模式,并产生自学习过程所需的误差信号。为了实现自组织学习和控制,引入了一个评价控制效果的函数来决定是否可以选择在线运行数据作为学习样本来训练控制器,以及如何训练控制器。对一些电阻炉温度控制问题的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural-net-based model-free self-tuning controller with on-line self-learning ability for industrial furnace
A neural-net-based model-free self-tuning controller for systems with unknown models or some modeling complexity is proposed in this paper. To enhance the on-line self-learning and adaptive abilities, an attenuating excitation signal is introduced to excite all modes of the systems and to produce the error signal needed for self-learning process. To realize the self-organized learning and control, a function evaluating the control effect is introduced to decide whether the on-line operational data can be chosen as the learning samples to train the controller, and how to train. The experiment results for the temperature control problem of some resistance furnaces show the effectiveness of the method.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信