由几何和二项数据构造的次采样图像的无监督恢复

Y. Altmann, S. Mclaughlin, M. Padgett
{"title":"由几何和二项数据构造的次采样图像的无监督恢复","authors":"Y. Altmann, S. Mclaughlin, M. Padgett","doi":"10.1109/CAMSAP.2017.8313187","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate a new imaging denoising algorithm for single-photon applications where the classical Poisson noise assumption does not hold. Precisely, we consider two different acquisition scenarios where the unknown intensity profile is to be recovered from subsampled measurements following binomial or geometric distributions, whose parameters are nonlinearly related to the intensities of interest. Adopting a Bayesian approach, a flexible prior model is assigned to the unknown intensity field and an adaptive Markov chain Monte Carlo methods is used to perform Bayesian inference. In particular, it allows us to automatically adjust the amount of regularisation required for satisfactory image inpainting/restoration. The performance of the proposed model/method is assessed quantitatively through a series of experiments conducted with controlled data and the results obtained are very promising for future analysis of multidimensional single-photon images.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Unsupervised restoration of subsampled images constructed from geometric and binomial data\",\"authors\":\"Y. Altmann, S. Mclaughlin, M. Padgett\",\"doi\":\"10.1109/CAMSAP.2017.8313187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate a new imaging denoising algorithm for single-photon applications where the classical Poisson noise assumption does not hold. Precisely, we consider two different acquisition scenarios where the unknown intensity profile is to be recovered from subsampled measurements following binomial or geometric distributions, whose parameters are nonlinearly related to the intensities of interest. Adopting a Bayesian approach, a flexible prior model is assigned to the unknown intensity field and an adaptive Markov chain Monte Carlo methods is used to perform Bayesian inference. In particular, it allows us to automatically adjust the amount of regularisation required for satisfactory image inpainting/restoration. The performance of the proposed model/method is assessed quantitatively through a series of experiments conducted with controlled data and the results obtained are very promising for future analysis of multidimensional single-photon images.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们研究了一种新的单光子成像去噪算法,在经典泊松噪声假设不成立的情况下。准确地说,我们考虑了两种不同的采集场景,其中未知强度剖面将从遵循二项或几何分布的次采样测量中恢复,其参数与感兴趣的强度非线性相关。采用贝叶斯方法,对未知强度场分配柔性先验模型,采用自适应马尔可夫链蒙特卡罗方法进行贝叶斯推理。特别是,它允许我们自动调整满意的图像绘制/恢复所需的正则化量。通过一系列控制数据的实验,对所提出的模型/方法的性能进行了定量评估,所得结果对未来多维单光子图像的分析非常有希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised restoration of subsampled images constructed from geometric and binomial data
In this paper, we investigate a new imaging denoising algorithm for single-photon applications where the classical Poisson noise assumption does not hold. Precisely, we consider two different acquisition scenarios where the unknown intensity profile is to be recovered from subsampled measurements following binomial or geometric distributions, whose parameters are nonlinearly related to the intensities of interest. Adopting a Bayesian approach, a flexible prior model is assigned to the unknown intensity field and an adaptive Markov chain Monte Carlo methods is used to perform Bayesian inference. In particular, it allows us to automatically adjust the amount of regularisation required for satisfactory image inpainting/restoration. The performance of the proposed model/method is assessed quantitatively through a series of experiments conducted with controlled data and the results obtained are very promising for future analysis of multidimensional single-photon images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信