生成对抗网络训练中的少量数据多样化

Lucas Fontes Buzutti, C. Thomaz
{"title":"生成对抗网络训练中的少量数据多样化","authors":"Lucas Fontes Buzutti, C. Thomaz","doi":"10.5753/wvc.2021.18892","DOIUrl":null,"url":null,"abstract":"The first GANs have initially produced sharp images in relatively small resolution and with limited variations, and unstable training. Later works proposed new GAN models capable of generating sharp images in high resolution and with a high level of variation. However, these models use unlimited and highly diversified image sets. We discuss here the use of these models with real-world image sets, since they are composed of limited sample size sets.","PeriodicalId":311431,"journal":{"name":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Few Data Diversification in Training Generative Adversarial Networks\",\"authors\":\"Lucas Fontes Buzutti, C. Thomaz\",\"doi\":\"10.5753/wvc.2021.18892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The first GANs have initially produced sharp images in relatively small resolution and with limited variations, and unstable training. Later works proposed new GAN models capable of generating sharp images in high resolution and with a high level of variation. However, these models use unlimited and highly diversified image sets. We discuss here the use of these models with real-world image sets, since they are composed of limited sample size sets.\",\"PeriodicalId\":311431,\"journal\":{\"name\":\"Anais do XVII Workshop de Visão Computacional (WVC 2021)\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XVII Workshop de Visão Computacional (WVC 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/wvc.2021.18892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wvc.2021.18892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

第一批gan最初以相对较小的分辨率和有限的变化产生清晰的图像,并且训练不稳定。后来的工作提出了新的GAN模型,能够产生高分辨率和高水平变化的清晰图像。然而,这些模型使用无限和高度多样化的图像集。我们在这里讨论这些模型与真实世界图像集的使用,因为它们由有限的样本量集组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Few Data Diversification in Training Generative Adversarial Networks
The first GANs have initially produced sharp images in relatively small resolution and with limited variations, and unstable training. Later works proposed new GAN models capable of generating sharp images in high resolution and with a high level of variation. However, these models use unlimited and highly diversified image sets. We discuss here the use of these models with real-world image sets, since they are composed of limited sample size sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信