FDD系统中协方差转换的稀疏感知方法

C. López, J. Riba
{"title":"FDD系统中协方差转换的稀疏感知方法","authors":"C. López, J. Riba","doi":"10.23919/eusipco55093.2022.9909956","DOIUrl":null,"url":null,"abstract":"This paper proposes a practical way to solve the Uplink-Downlink Covariance Conversion (UDCC) problem in a frequency Division Duplex (FDD) communication system. The UDCC problem consists in the estimation of the Downlink (DL) spatial covariance matrix from the prior knowledge of the Uplink (UL) spatial covariance matrix without the need of a feedback transmission from the User Equipment (UE) to the Base Station (BS). Estimating the DL sample spatial covariance matrix is unfeasible in current massive Multiple-Input Multiple-Output (MIMO) deployments in frequency selective or fast fading channels due to the required large training overhead. Our method is based on the application of sparse filtering ideas to the estimation of a quantized version of the so-called Angular Power Spectrum (APS), being the common factor between the UL and DL spatial channel covariance matrices.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse-Aware Approach for Covariance Conversion in FDD Systems\",\"authors\":\"C. López, J. Riba\",\"doi\":\"10.23919/eusipco55093.2022.9909956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a practical way to solve the Uplink-Downlink Covariance Conversion (UDCC) problem in a frequency Division Duplex (FDD) communication system. The UDCC problem consists in the estimation of the Downlink (DL) spatial covariance matrix from the prior knowledge of the Uplink (UL) spatial covariance matrix without the need of a feedback transmission from the User Equipment (UE) to the Base Station (BS). Estimating the DL sample spatial covariance matrix is unfeasible in current massive Multiple-Input Multiple-Output (MIMO) deployments in frequency selective or fast fading channels due to the required large training overhead. Our method is based on the application of sparse filtering ideas to the estimation of a quantized version of the so-called Angular Power Spectrum (APS), being the common factor between the UL and DL spatial channel covariance matrices.\",\"PeriodicalId\":231263,\"journal\":{\"name\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eusipco55093.2022.9909956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种解决频分双工(FDD)通信系统中上下行协方差转换(UDCC)问题的实用方法。UDCC问题是在不需要从用户设备(UE)到基站(BS)的反馈传输的情况下,根据上行链路(UL)空间协方差矩阵的先验知识估计下行链路(DL)空间协方差矩阵。由于需要大量的训练开销,在当前频率选择或快速衰落信道中的大规模多输入多输出(MIMO)部署中,估计深度学习样本空间协方差矩阵是不可行的。我们的方法是基于稀疏滤波思想的应用,以估计所谓的角功率谱(APS)的量化版本,是UL和DL空间信道协方差矩阵之间的共同因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse-Aware Approach for Covariance Conversion in FDD Systems
This paper proposes a practical way to solve the Uplink-Downlink Covariance Conversion (UDCC) problem in a frequency Division Duplex (FDD) communication system. The UDCC problem consists in the estimation of the Downlink (DL) spatial covariance matrix from the prior knowledge of the Uplink (UL) spatial covariance matrix without the need of a feedback transmission from the User Equipment (UE) to the Base Station (BS). Estimating the DL sample spatial covariance matrix is unfeasible in current massive Multiple-Input Multiple-Output (MIMO) deployments in frequency selective or fast fading channels due to the required large training overhead. Our method is based on the application of sparse filtering ideas to the estimation of a quantized version of the so-called Angular Power Spectrum (APS), being the common factor between the UL and DL spatial channel covariance matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信