流固耦合的Taylor-Hood和Scott-Vogelius单元有限元逼近

K. Vacek, P. Sváček
{"title":"流固耦合的Taylor-Hood和Scott-Vogelius单元有限元逼近","authors":"K. Vacek, P. Sváček","doi":"10.21136/panm.2022.24","DOIUrl":null,"url":null,"abstract":"This paper focuses on mathematical modeling and finite element simulation of fluid-structure interaction problems. A simplified problem of two-dimensional incompressible fluid flow interacting with a rigid structure, whose motion is described with one degree of freedom, is considered. The problem is mathematically described and numerically approximated using the finite element method. Two possibilities, namely Taylor-Hood and Scott-Vogelius elements are presented and implemented. Finally, numerical results of the flow around the cylinder are shown and compared with the reference data.","PeriodicalId":197168,"journal":{"name":"Programs and Algorithms of Numerical Mathematics 21","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On finite element approximation of fluid structure interaction by Taylor-Hood and Scott-Vogelius elements\",\"authors\":\"K. Vacek, P. Sváček\",\"doi\":\"10.21136/panm.2022.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on mathematical modeling and finite element simulation of fluid-structure interaction problems. A simplified problem of two-dimensional incompressible fluid flow interacting with a rigid structure, whose motion is described with one degree of freedom, is considered. The problem is mathematically described and numerically approximated using the finite element method. Two possibilities, namely Taylor-Hood and Scott-Vogelius elements are presented and implemented. Finally, numerical results of the flow around the cylinder are shown and compared with the reference data.\",\"PeriodicalId\":197168,\"journal\":{\"name\":\"Programs and Algorithms of Numerical Mathematics 21\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Programs and Algorithms of Numerical Mathematics 21\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21136/panm.2022.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Programs and Algorithms of Numerical Mathematics 21","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21136/panm.2022.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究流固耦合问题的数学建模和有限元模拟。考虑了二维不可压缩流体与刚体相互作用的简化问题,刚体的运动描述为一个自由度。用有限元法对该问题进行了数学描述和数值逼近。提出并实现了两种可能性,即Taylor-Hood和Scott-Vogelius元素。最后给出了圆柱绕流的数值计算结果,并与参考数据进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On finite element approximation of fluid structure interaction by Taylor-Hood and Scott-Vogelius elements
This paper focuses on mathematical modeling and finite element simulation of fluid-structure interaction problems. A simplified problem of two-dimensional incompressible fluid flow interacting with a rigid structure, whose motion is described with one degree of freedom, is considered. The problem is mathematically described and numerically approximated using the finite element method. Two possibilities, namely Taylor-Hood and Scott-Vogelius elements are presented and implemented. Finally, numerical results of the flow around the cylinder are shown and compared with the reference data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信