微操作的正交Gough-Stewart平台

F. Jafari, J. McInroy
{"title":"微操作的正交Gough-Stewart平台","authors":"F. Jafari, J. McInroy","doi":"10.1109/TRA.2003.814506","DOIUrl":null,"url":null,"abstract":"Development of methods to design optimal Gough-Stewart platform geometries capable of meeting desired specifications is of high interest. Computationally intensive methods have been used to treat this problem in various settings. This paper uses analytic methods to characterize all orthogonal Gough-Stewart platforms (OGSPs) and to study their properties over a small workspace. This characterization is used to design optimal OGSPs for precision applications that achieve a desired hyperellipsoid of velocities. Some examples demonstrating the versatility of this theory are discussed.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2003-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Orthogonal Gough-Stewart platforms for micromanipulation\",\"authors\":\"F. Jafari, J. McInroy\",\"doi\":\"10.1109/TRA.2003.814506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Development of methods to design optimal Gough-Stewart platform geometries capable of meeting desired specifications is of high interest. Computationally intensive methods have been used to treat this problem in various settings. This paper uses analytic methods to characterize all orthogonal Gough-Stewart platforms (OGSPs) and to study their properties over a small workspace. This characterization is used to design optimal OGSPs for precision applications that achieve a desired hyperellipsoid of velocities. Some examples demonstrating the versatility of this theory are discussed.\",\"PeriodicalId\":161449,\"journal\":{\"name\":\"IEEE Trans. Robotics Autom.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Robotics Autom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRA.2003.814506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRA.2003.814506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

开发设计最优Gough-Stewart平台几何形状的方法能够满足期望的规格是非常有趣的。计算密集型的方法已经被用来在各种情况下处理这个问题。本文用解析方法描述了所有正交Gough-Stewart平台(ogsp),并研究了它们在一个小工作空间上的性质。该特性用于设计最佳的ogsp,用于实现所需的超椭球速度的精密应用。文中还讨论了一些例子,说明了这一理论的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orthogonal Gough-Stewart platforms for micromanipulation
Development of methods to design optimal Gough-Stewart platform geometries capable of meeting desired specifications is of high interest. Computationally intensive methods have been used to treat this problem in various settings. This paper uses analytic methods to characterize all orthogonal Gough-Stewart platforms (OGSPs) and to study their properties over a small workspace. This characterization is used to design optimal OGSPs for precision applications that achieve a desired hyperellipsoid of velocities. Some examples demonstrating the versatility of this theory are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信